Wataru Fujii, Osamu Yamazaki, Daigoro Hirohama, Ken Kaseda, Emiko Kuribayashi-Okuma, Motonori Tsuji, Makoto Hosoyamada, Yuta Kochi, Shigeru Shibata
{"title":"Gene-environment interaction modifies the association between hyperinsulinemia and serum urate levels through SLC22A12.","authors":"Wataru Fujii, Osamu Yamazaki, Daigoro Hirohama, Ken Kaseda, Emiko Kuribayashi-Okuma, Motonori Tsuji, Makoto Hosoyamada, Yuta Kochi, Shigeru Shibata","doi":"10.1172/JCI186633","DOIUrl":"https://doi.org/10.1172/JCI186633","url":null,"abstract":"<p><strong>Background: </strong>Hyperinsulinemia and insulin resistance often accompany elevated serum urate levels (hyperuricemia), a highly heritable condition that triggers gout; however, the underlying mechanisms are unclear.</p><p><strong>Methods: </strong>We evaluated the association between the index of hyperinsulinemia and the fractional excretion of urate (FEUA) in 162 outpatients. The underlying mechanisms were investigated through single-cell data analysis and kinase screening combined with cell culture experiments. In 377,358 participants of the UK Biobank (UKBB), we analyzed serum urate, hyperinsulinemia, and salt intake. We also examined gene-environment interactions using single nucleotide variants in SLC22A12, which encodes urate transporter 1 (URAT1).</p><p><strong>Results: </strong>The index of hyperinsulinemia was inversely associated with FEUA independently of other covariates. Mechanistically, URAT1 cell-surface abundance and urate transport activity were regulated by URAT1-Thr408 phosphorylation, which was stimulated by hyperinsulinemia via AKT. Kinase screening and single-cell data analysis revealed that SGK1, induced by high salt, activated the same pathway, increasing URAT1. Arg405 was essential for these kinases to phosphorylate URAT1-Thr408. In UKBB participants, hyperinsulinemia and high salt intake were independently associated with increased serum urate levels. We found that SLC22A12 eQTL rs475688 synergistically enhanced the positive association between serum urate and hyperinsulinemia.</p><p><strong>Conclusion: </strong>URAT1 mediates the association between hyperinsulinemia and hyperuricemia. Our data provide evidence for the role of gene-environment interactions in determining serum urate levels, paving the way for personalized management of hyperuricemia.</p><p><strong>Funding: </strong>ACRO Research Grants of Teikyo University; JSPS; the Japanese Society of Gout and Uric & Nucleic Acids; Fuji Yakuhin; Nanken-Kyoten; Medical Research Center Initiative for High Depth Omics.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143657349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Santosh Yadav, Muralidharan Anbalagan, Shamima Khatun, Devadharshini Prabhakaran, Justin Manges, Yasuka Matsunaga, James B McLachlan, Joseph A Lasky, Jay Kolls, Victor J Thannickal
{"title":"Reactivation of CTLA4-expressing T cells Accelerates Resolution of Lung Fibrosis in a Humanized Mouse Model.","authors":"Santosh Yadav, Muralidharan Anbalagan, Shamima Khatun, Devadharshini Prabhakaran, Justin Manges, Yasuka Matsunaga, James B McLachlan, Joseph A Lasky, Jay Kolls, Victor J Thannickal","doi":"10.1172/JCI181775","DOIUrl":"https://doi.org/10.1172/JCI181775","url":null,"abstract":"<p><p>Tissue regenerative responses involve complex interactions between resident structural and immune cells. Recent reports indicate that accumulation of senescent cells during injury repair contributes to pathological tissue fibrosis. Using tissue-based spatial transcriptomics and proteomics, we identified upregulation of the immune checkpoint protein, cytotoxic T-lymphocyte associated protein 4 (CTLA4) on CD8+ T cells adjacent to regions of active fibrogenesis in human idiopathic pulmonary fibrosis (IPF) and in a murine model of repetitive bleomycin lung injury model of persistent fibrosis. In humanized CTLA4 knock-in mice, treatment with ipilimumab, an FDA-approved drug that targets CTLA4, resulted in accelerated lung epithelial regeneration and diminished fibrosis from repetitive bleomycin injury. Ipilimumab treatment resulted in the expansion of Cd3e+ T cells, diminished accumulation of senescent cells, and robust expansion of type 2 alveolar epithelial cells, facultative progenitor cells of the alveolar epithelium. Ex-vivo activation of isolated CTLA4-expressing CD8+ cells from mice with established fibrosis resulted in enhanced cytolysis of senescent cells, suggesting that impaired immune-mediated clearance of these cells contribute to persistence of lung fibrosis in this murine model. Our studies support the concept that endogenous immune surveillance of senescent cells may be essential in promoting tissue regenerative responses that facilitate the resolution of fibrosis.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143657358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Disrupted Minor Intron Splicing Activates Reductive Carboxylation-mediated Lipogenesis to Drive Metabolic Dysfunction-associated Steatotic Liver Disease Progression.","authors":"Yinkun Fu, Xin Peng, Hongyong Song, Xiaoyun Li, Yang Zhi, Jieting Tang, Yifan Liu, Ding Chen, Wenyan Li, Jing Zhang, Jing Ma, Ming He, Yimin Mao, Xu-Yun Zhao","doi":"10.1172/JCI186478","DOIUrl":"https://doi.org/10.1172/JCI186478","url":null,"abstract":"<p><p>Aberrant RNA splicing is tightly linked to diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD). Here, we revealed that minor intron splicing, a unique and conserved RNA processing event, is largely disrupted upon the progression of metabolic dysfunction-associated steatohepatitis (MASH) in mice and humans. We demonstrated deficiency of minor intron splicing in the liver induces MASH transition upon obesity-induced insulin resistance and LXR activation. Mechanistically, inactivation of minor intron splicing leads to minor intron retention of Insig1 and Insig2, resulting in premature termination of translation, which drives proteolytic activation of SREBP1c. This mechanism is conserved in human patients with MASH. Notably, disrupted minor intron splicing activates glutamine reductive metabolism for de novo lipogenesis through the induction of Idh1, which causes the accumulation of ammonia in the liver, thereby initiating hepatic fibrosis upon LXR activation. Ammonia clearance or IDH1 inhibition blocks hepatic fibrogenesis and mitigates MASH progression. More importantly, the overexpression of Zrsr1 restored minor intron retention and ameliorated the development of MASH, indicating that dysfunctional minor intron splicing is an emerging pathogenic mechanism that drives MASH progression. Additionally, reductive carboxylation flux triggered by minor intron retention in hepatocytes serves as a crucial checkpoint and potential target for MASH therapy.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143657346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenjun Li, Yuriko Terada, Yun Zhu Bai, Yuhei Yokoyama, Hailey M Shepherd, Junedh M Amrute, Amit I Bery, Zhiyi Liu, Jason M Gauthier, Marina Terekhova, Ankit Bharat, Jon H Ritter, Varun Puri, Ramsey R Hachem, Hēth R Turnquist, Peter T Sage, Alessandro Alessandrini, Maxim N Artyomov, Kory J Lavine, Ruben G Nava, Alexander S Krupnick, Andrew E Gelman, Daniel Kreisel
{"title":"Maintenance of graft tissue-resident Foxp3+ cells is necessary for lung transplant tolerance in mice.","authors":"Wenjun Li, Yuriko Terada, Yun Zhu Bai, Yuhei Yokoyama, Hailey M Shepherd, Junedh M Amrute, Amit I Bery, Zhiyi Liu, Jason M Gauthier, Marina Terekhova, Ankit Bharat, Jon H Ritter, Varun Puri, Ramsey R Hachem, Hēth R Turnquist, Peter T Sage, Alessandro Alessandrini, Maxim N Artyomov, Kory J Lavine, Ruben G Nava, Alexander S Krupnick, Andrew E Gelman, Daniel Kreisel","doi":"10.1172/JCI178975","DOIUrl":"https://doi.org/10.1172/JCI178975","url":null,"abstract":"<p><p>Mechanisms that mediate allograft tolerance differ between organs. We have previously shown that Foxp3+ T cell-enriched bronchus-associated lymphoid tissue (BALT) is induced in tolerant murine lung allografts and that these Foxp3+ cells suppress alloimmune responses locally and systemically. Here, we demonstrated that Foxp3+ cells that reside in tolerant lung allografts differed phenotypically and transcriptionally from those in the periphery and were clonally expanded. Using a mouse lung re-transplant model, we showed that recipient Foxp3+ cells were continuously recruited to the BALT within tolerant allografts. We identified distinguishing features of graft-resident and newly recruited Foxp3+ cells and showed that graft-infiltrating Foxp3+ cells acquired transcriptional profiles resembling those of graft-resident Foxp3+ cells over time. Allografts underwent combined antibody-mediated rejection (AMR) and acute cellular rejection (ACR) when recruitment of recipient Foxp3+ cells was prevented. Finally, we showed that local administration of IL-33 could expand and activate allograft-resident Foxp3+ cells providing a platform for the design of tolerogenic therapies for lung transplant recipients. Our findings establish graft-resident Foxp3+ cells as critical orchestrators of lung transplant tolerance and highlight the need to develop lung-specific immunosuppression.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143657353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manuel A Torres Acosta, Jonathan K Gurkan, Qianli Liu, Nurbek Mambetsariev, Carla Reyes Flores, Kathryn A Helmin, Anthony M Joudi, Luisa Morales-Nebreda, Kathleen Cheng, Hiam Abdala-Valencia, Samuel E Weinberg, Benjamin D Singer
{"title":"AMPK is necessary for Treg functional adaptation to microenvironmental stress during malignancy and viral pneumonia.","authors":"Manuel A Torres Acosta, Jonathan K Gurkan, Qianli Liu, Nurbek Mambetsariev, Carla Reyes Flores, Kathryn A Helmin, Anthony M Joudi, Luisa Morales-Nebreda, Kathleen Cheng, Hiam Abdala-Valencia, Samuel E Weinberg, Benjamin D Singer","doi":"10.1172/JCI179572","DOIUrl":"10.1172/JCI179572","url":null,"abstract":"<p><p>CD4+FOXP3+ regulatory T (Treg) cells maintain self-tolerance, suppress the immune response to cancer, and protect against tissue injury during acute inflammation. Treg cells require mitochondrial metabolism to function, but how Treg cells adapt their metabolic programs to optimize their function during an immune response occurring in a metabolically stressed microenvironment remains unclear. Here, we tested whether Treg cells require the energy homeostasis-maintaining enzyme AMPK to adapt to metabolically aberrant microenvironments caused by malignancy or lung injury, finding that AMPK is dispensable for Treg cell immune-homeostatic function but is necessary for full Treg cell function in B16 melanoma tumors and during influenza virus pneumonia. AMPK-deficient Treg cells had lower mitochondrial mass and exhibited an impaired ability to maximize aerobic respiration. Mechanistically, we found that AMPK regulates DNA methyltransferase 1 to promote transcriptional programs associated with mitochondrial function in the tumor microenvironment. During viral pneumonia, we found that AMPK sustains metabolic homeostasis and mitochondrial activity. Induction of DNA hypomethylation was sufficient to rescue mitochondrial mass in AMPK-deficient Treg cells, linking AMPK function to mitochondrial metabolism via DNA methylation. These results define AMPK as a determinant of Treg cell adaptation to metabolic stress and offer potential therapeutic targets in cancer and tissue injury.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143657330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sindhuri Prakash, Nicholas J Steers, Yifu Li, Elena Sanchez-Rodriguez, Miguel Verbitsky, Isabel Robbins, Jenna Simpson, Sharvari Pathak, Milan Raska, Colin Reily, Anna Ng, Judy Liang, Natalia DeMaria, Amanda Katiraei, Kelsey O'Stevens, Clara Fischman, Samantha Shapiro, Swetha Kodali, Jason McCutchan, Heekuk Park, Djamila Eliby, Marco Delsante, Landino Allegri, Enrico Fiaccadori, Monica Bodria, Maddalena Marasa, Elizabeth Raveche, Bruce A Julian, Anne-Catrin Uhlemann, Krzysztof Kiryluk, Hong Zhang, Vivette D D'Agati, Simone Sanna-Cherchi, Jan Novak, Ali G Gharavi
{"title":"Loss of GalNAc-T14 links O-glycosylation defects to alterations in B cell homing in IgA nephropathy.","authors":"Sindhuri Prakash, Nicholas J Steers, Yifu Li, Elena Sanchez-Rodriguez, Miguel Verbitsky, Isabel Robbins, Jenna Simpson, Sharvari Pathak, Milan Raska, Colin Reily, Anna Ng, Judy Liang, Natalia DeMaria, Amanda Katiraei, Kelsey O'Stevens, Clara Fischman, Samantha Shapiro, Swetha Kodali, Jason McCutchan, Heekuk Park, Djamila Eliby, Marco Delsante, Landino Allegri, Enrico Fiaccadori, Monica Bodria, Maddalena Marasa, Elizabeth Raveche, Bruce A Julian, Anne-Catrin Uhlemann, Krzysztof Kiryluk, Hong Zhang, Vivette D D'Agati, Simone Sanna-Cherchi, Jan Novak, Ali G Gharavi","doi":"10.1172/JCI181164","DOIUrl":"https://doi.org/10.1172/JCI181164","url":null,"abstract":"<p><p>Aberrant O-glycosylation of the IgA1 hinge region is a characteristic finding in patients with IgA nephropathy (IgAN) and is thought to contribute to immune-complex formation and kidney injury. Other studies have suggested that abnormalities in mucosal immunity and lymphocyte homing are major contributors to disease. We identified a family with IgAN segregating a heterozygous predicted loss-of-function (LOF) variant in GALNT14, the gene encoding N-acetylgalactosaminyltransferase 14, one of the enzymes involved in mucin-type protein O-glycosylation. While GALNT14 is expressed in IgA1-producing cells, carriers of the LOF variant did not have altered levels of poorly glycosylated IgA1, suggesting other disease mechanisms. Investigation of Galnt14 null mice revealed elevated serum IgA levels and ex vivo IgA production by B cells. These mice developed glomerular IgA deposition with aging and after induction of sterile colitis. Galnt14 null mice also displayed an attenuated mucin layer in the colon and redistribution of IgA-producing cells from mucosal to systemic sites. Adoptive-transfer experiments indicated impaired homing of spleen-derived Galnt14 deficient B lymphocytes, resulting in increased retention in peripheral blood. These findings suggest that abnormalities in O-glycosylation alter mucosal immunity and B lymphocyte homing, pointing to an expanded role of aberrant O-glycosylation in the pathogenesis of IgAN.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143735788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Apabrita Ayan Das, Markus Waldeck-Weiermair, Shambhu Yadav, Fotios Spyropoulos, Arvind Pandey, Tanoy Dutta, Taylor A Covington, Thomas Michel
{"title":"Differential aortic aneurysm formation provoked by chemogenetic oxidative stress.","authors":"Apabrita Ayan Das, Markus Waldeck-Weiermair, Shambhu Yadav, Fotios Spyropoulos, Arvind Pandey, Tanoy Dutta, Taylor A Covington, Thomas Michel","doi":"10.1172/JCI188743","DOIUrl":"https://doi.org/10.1172/JCI188743","url":null,"abstract":"<p><p>Aortic aneurysms are potentially fatal focal enlargements of the aortic lumen; the disease burden disease is increasing as the human population ages. Pathological oxidative stress is implicated in development of aortic aneurysms. We pursued a chemogenetic approach to create an animal model of aortic aneurysm formation using a transgenic mouse line DAAO-TGTie2 that expresses yeast D-amino acid oxidase (DAAO) under control of the endothelial Tie2 promoter. In DAAO-TGTie2 mice, DAAO generates the reactive oxygen species hydrogen peroxide (H2O2) in endothelial cells only when provided with D-amino acids. When DAAO-TGTie2 mice are chronically fed D-alanine, the animals become hypertensive and develop abdominal but not thoracic aortic aneurysms. Generation of H2O2 in the endothelium leads to oxidative stress throughout the vascular wall. Proteomic analyses indicate that the oxidant-modulated protein kinase JNK1 is dephosphorylated by the phophoprotein phosphatase DUSP3 in abdominal but not thoracic aorta, causing activation of KLF4-dependent transcriptional pathways that trigger phenotypic switching and aneurysm formation. Pharmacological DUSP3 inhibition completely blocks aneurysm formation caused by chemogenetic oxidative stress. These studies establish that regional differences in oxidant-modulated signaling pathways lead to differential disease progression in discrete vascular beds, and identify DUSP3 as a potential pharmacological target for the treatment of aortic aneurysms.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143657334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yongbin Chen, Scott M Johnson, Stephanie D Burr, Davide Povero, Aaron M Anderson, Cailin E McMahon, Jun Liu
{"title":"Absence of intracellular lipolytic inhibitor G0S2 enhances intravascular triglyceride clearance and abolishes diet-induced hypertriglyceridemia.","authors":"Yongbin Chen, Scott M Johnson, Stephanie D Burr, Davide Povero, Aaron M Anderson, Cailin E McMahon, Jun Liu","doi":"10.1172/JCI181754","DOIUrl":"https://doi.org/10.1172/JCI181754","url":null,"abstract":"<p><p>The interplay between intracellular and intravascular lipolysis is crucial for maintaining circulating lipid levels and systemic energy homeostasis. Adipose triglyceride lipase (ATGL) and lipoprotein lipase (LPL), the primary triglyceride (TG) lipases responsible for these two spatially separate processes, are highly expressed in adipose tissue. Yet, their coordinated regulation remains undetermined. Here, we demonstrate that genetic ablation of G0S2, a specific inhibitory protein of ATGL, completely abolishes diet-induced hypertriglyceridemia and significantly attenuates atherogenesis in mice. These effects are attributed to enhanced whole-body TG clearance, not altered hepatic TG secretion. Specifically, G0S2 deletion increases circulating LPL concentration and activity, predominantly through LPL production from white adipose tissue (WAT). Strikingly, transplantation of G0S2-deficient WAT normalizes plasma TG levels in mice with hypertriglyceridemia. In conjunction with improved insulin sensitivity and decreased ANGPTL4 expression, the absence of G0S2 enhances the stability of LPL protein in adipocytes, a phenomenon that can be reversed upon ATGL inhibition. Collectively, these findings highlight the pivotal role of adipocyte G0S2 in regulating both intracellular and intravascular lipolysis, and the possibility of targeting G0S2 as a viable pharmacological approach to reduce circulating TGs.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143657314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Deepa Seetharam, Jay Chandar, Christian K Ramsoomair, Jelisah F Desgraves, Alexandra Alvarado Medina, Anna Jane Hudson, Ava Amidei, Jesus R Castro, Vaidya Govindarajan, Sarah Wang, Yong Zhang, Adam M Sonabend, Mynor J Mendez Valdez, Dragan Maric, Vasundara Govindarajan, Sarah R Rivas, Victor M Lu, Ritika Tiwari, Nima Sharifi, Emmanuel Thomas, Marcus Alexander, Catherine DeMarino, Kory Johnson, Macarena I De La Fuente, Ruham Alshiekh Nasany, Teresa Maria Rosaria Noviello, Michael E Ivan, Ricardo J Komotar, Antonio Iavarone, Avindra Nath, John Heiss, Michele Ceccarelli, Katherine B Chiappinelli, Maria E Figueroa, Defne Bayik, Ashish H Shah
{"title":"Activating antiviral immune responses potentiates immune checkpoint inhibition in glioblastoma models.","authors":"Deepa Seetharam, Jay Chandar, Christian K Ramsoomair, Jelisah F Desgraves, Alexandra Alvarado Medina, Anna Jane Hudson, Ava Amidei, Jesus R Castro, Vaidya Govindarajan, Sarah Wang, Yong Zhang, Adam M Sonabend, Mynor J Mendez Valdez, Dragan Maric, Vasundara Govindarajan, Sarah R Rivas, Victor M Lu, Ritika Tiwari, Nima Sharifi, Emmanuel Thomas, Marcus Alexander, Catherine DeMarino, Kory Johnson, Macarena I De La Fuente, Ruham Alshiekh Nasany, Teresa Maria Rosaria Noviello, Michael E Ivan, Ricardo J Komotar, Antonio Iavarone, Avindra Nath, John Heiss, Michele Ceccarelli, Katherine B Chiappinelli, Maria E Figueroa, Defne Bayik, Ashish H Shah","doi":"10.1172/JCI183745","DOIUrl":"10.1172/JCI183745","url":null,"abstract":"<p><p>Viral mimicry refers to the activation of innate antiviral immune responses due to the induction of endogenous retroelements (REs). Viral mimicry augments antitumor immune responses and sensitizes solid tumors to immunotherapy. Here, we found that targeting what we believe to be a novel, master epigenetic regulator, Zinc Finger Protein 638 (ZNF638), induces viral mimicry in glioblastoma (GBM) preclinical models and potentiates immune checkpoint inhibition (ICI). ZNF638 recruits the HUSH complex, which precipitates repressive H3K9me3 marks on endogenous REs. In GBM, ZNF638 is associated with marked locoregional immunosuppressive transcriptional signatures, reduced endogenous RE expression, and poor immune cell infiltration. Targeting ZNF638 decreased H3K9 trimethylation, increased REs, and activated intracellular dsRNA signaling cascades. Furthermore, ZNF638 knockdown upregulated antiviral immune programs and significantly increased PD-L1 immune checkpoint expression in diverse GBM models. Importantly, targeting ZNF638 sensitized mice to ICI in syngeneic murine orthotopic models through innate IFN signaling. This response was recapitulated in recurrent GBM (rGBM) samples with radiographic responses to checkpoint inhibition with widely increased expression of dsRNA, PD-L1, and perivascular CD8 cell infiltration, suggesting that dsRNA signaling may mediate response to immunotherapy. Finally, low ZNF638 expression was a biomarker of clinical response to ICI and improved survival in patients with rGBM and patients with melanoma. Our findings suggest that ZNF638 could serve as a target to potentiate immunotherapy in gliomas.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"135 6","pages":""},"PeriodicalIF":13.3,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910234/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143648719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tingting Qin, Austin K Mattox, Jean S Campbell, Jong Chul Park, Kee-Young Shin, Shiting Li, Peter M Sadow, William C Faquin, Goran Micevic, Andrew J Daniels, Robert Haddad, Christopher S Garris, Mikael J Pittet, Thorsten R Mempel, Anne ONeill, Maureen A Sartor, Sara I Pai
{"title":"Epigenetic therapy sensitizes anti-PD-1 refractory head and neck cancers to immunotherapy rechallenge.","authors":"Tingting Qin, Austin K Mattox, Jean S Campbell, Jong Chul Park, Kee-Young Shin, Shiting Li, Peter M Sadow, William C Faquin, Goran Micevic, Andrew J Daniels, Robert Haddad, Christopher S Garris, Mikael J Pittet, Thorsten R Mempel, Anne ONeill, Maureen A Sartor, Sara I Pai","doi":"10.1172/JCI181671","DOIUrl":"10.1172/JCI181671","url":null,"abstract":"<p><p>BACKGROUNDImmune checkpoint blockade (ICB) is an effective treatment in a subset of patients diagnosed with head and neck squamous cell carcinoma (HNSCC); however, the majority of patients are refractory.METHODSIn a nonrandomized, open-label Phase 1b clinical trial, participants with recurrent and/or metastatic (R/M) HNSCC were treated with low-dose 5-azacytidine (5-aza) daily for either 5 or 10 days in combination with durvalumab and tremelimumab after progression on ICB. The primary objective was to assess the biologically effective dose of 5-aza as determined by molecular changes in paired baseline and on-treatment tumor biopsies; the secondary objective was safety.RESULTSThirty-eight percent (3 of 8) of participants with evaluable paired tissue samples had a greater-than 2-fold increase from baseline in IFN-γ signature and CD274 (programmed cell death protein 1 ligand, PD-L1) expression within the tumor microenvironment (TME), which was associated with increased CD8+ T cell infiltration and decreased infiltration of CD4+ T regulatory cells. The mean neutrophil-to-lymphocyte ratio (NLR) decreased by greater than 50%, from 14.2 (SD 22.6) to 6.9 (SD 5.2). Median overall survival (OS) was 16.3 months (95% CI 1.9, NA), 2-year OS rate was 24.7% (95% CI: 4.5%, 53.2%), and 58% (7 of 12) of treated participants demonstrated prolonged OS of greater than 12 months.CONCLUSIONOur findings suggest that low-dose 5-aza can reprogram systemic host immune responses and the local TME to increase IFN-γ and PD-L1 expression. The increased expression of these established biomarkers correlated with prolonged OS upon ICB rechallenge.TRIAL REGISTRATIONClinicalTrials.gov NCT03019003.FUNDINGNIH/NCI P01 CA240239.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"135 6","pages":""},"PeriodicalIF":13.3,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910227/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143648815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}