Sindhuri Prakash, Nicholas J Steers, Yifu Li, Elena Sanchez-Rodriguez, Miguel Verbitsky, Isabel Robbins, Jenna Simpson, Sharvari Pathak, Milan Raska, Colin Reily, Anna Ng, Judy Liang, Natalia DeMaria, Amanda Katiraei, Kelsey O'Stevens, Clara Fischman, Samantha Shapiro, Swetha Kodali, Jason McCutchan, Heekuk Park, Djamila Eliby, Marco Delsante, Landino Allegri, Enrico Fiaccadori, Monica Bodria, Maddalena Marasa, Elizabeth Raveche, Bruce A Julian, Anne-Catrin Uhlemann, Krzysztof Kiryluk, Hong Zhang, Vivette D D'Agati, Simone Sanna-Cherchi, Jan Novak, Ali G Gharavi
{"title":"GalNAc-T14的缺失将o糖基化缺陷与IgA肾病中B细胞归巢的改变联系起来。","authors":"Sindhuri Prakash, Nicholas J Steers, Yifu Li, Elena Sanchez-Rodriguez, Miguel Verbitsky, Isabel Robbins, Jenna Simpson, Sharvari Pathak, Milan Raska, Colin Reily, Anna Ng, Judy Liang, Natalia DeMaria, Amanda Katiraei, Kelsey O'Stevens, Clara Fischman, Samantha Shapiro, Swetha Kodali, Jason McCutchan, Heekuk Park, Djamila Eliby, Marco Delsante, Landino Allegri, Enrico Fiaccadori, Monica Bodria, Maddalena Marasa, Elizabeth Raveche, Bruce A Julian, Anne-Catrin Uhlemann, Krzysztof Kiryluk, Hong Zhang, Vivette D D'Agati, Simone Sanna-Cherchi, Jan Novak, Ali G Gharavi","doi":"10.1172/JCI181164","DOIUrl":null,"url":null,"abstract":"<p><p>Aberrant O-glycosylation of the IgA1 hinge region is a characteristic finding in patients with IgA nephropathy (IgAN) and is thought to contribute to immune-complex formation and kidney injury. Other studies have suggested that abnormalities in mucosal immunity and lymphocyte homing are major contributors to disease. We identified a family with IgAN segregating a heterozygous predicted loss-of-function (LOF) variant in GALNT14, the gene encoding N-acetylgalactosaminyltransferase 14, one of the enzymes involved in mucin-type protein O-glycosylation. While GALNT14 is expressed in IgA1-producing cells, carriers of the LOF variant did not have altered levels of poorly glycosylated IgA1, suggesting other disease mechanisms. Investigation of Galnt14 null mice revealed elevated serum IgA levels and ex vivo IgA production by B cells. These mice developed glomerular IgA deposition with aging and after induction of sterile colitis. Galnt14 null mice also displayed an attenuated mucin layer in the colon and redistribution of IgA-producing cells from mucosal to systemic sites. Adoptive-transfer experiments indicated impaired homing of spleen-derived Galnt14 deficient B lymphocytes, resulting in increased retention in peripheral blood. These findings suggest that abnormalities in O-glycosylation alter mucosal immunity and B lymphocyte homing, pointing to an expanded role of aberrant O-glycosylation in the pathogenesis of IgAN.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Loss of GalNAc-T14 links O-glycosylation defects to alterations in B cell homing in IgA nephropathy.\",\"authors\":\"Sindhuri Prakash, Nicholas J Steers, Yifu Li, Elena Sanchez-Rodriguez, Miguel Verbitsky, Isabel Robbins, Jenna Simpson, Sharvari Pathak, Milan Raska, Colin Reily, Anna Ng, Judy Liang, Natalia DeMaria, Amanda Katiraei, Kelsey O'Stevens, Clara Fischman, Samantha Shapiro, Swetha Kodali, Jason McCutchan, Heekuk Park, Djamila Eliby, Marco Delsante, Landino Allegri, Enrico Fiaccadori, Monica Bodria, Maddalena Marasa, Elizabeth Raveche, Bruce A Julian, Anne-Catrin Uhlemann, Krzysztof Kiryluk, Hong Zhang, Vivette D D'Agati, Simone Sanna-Cherchi, Jan Novak, Ali G Gharavi\",\"doi\":\"10.1172/JCI181164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aberrant O-glycosylation of the IgA1 hinge region is a characteristic finding in patients with IgA nephropathy (IgAN) and is thought to contribute to immune-complex formation and kidney injury. Other studies have suggested that abnormalities in mucosal immunity and lymphocyte homing are major contributors to disease. We identified a family with IgAN segregating a heterozygous predicted loss-of-function (LOF) variant in GALNT14, the gene encoding N-acetylgalactosaminyltransferase 14, one of the enzymes involved in mucin-type protein O-glycosylation. While GALNT14 is expressed in IgA1-producing cells, carriers of the LOF variant did not have altered levels of poorly glycosylated IgA1, suggesting other disease mechanisms. Investigation of Galnt14 null mice revealed elevated serum IgA levels and ex vivo IgA production by B cells. These mice developed glomerular IgA deposition with aging and after induction of sterile colitis. Galnt14 null mice also displayed an attenuated mucin layer in the colon and redistribution of IgA-producing cells from mucosal to systemic sites. Adoptive-transfer experiments indicated impaired homing of spleen-derived Galnt14 deficient B lymphocytes, resulting in increased retention in peripheral blood. These findings suggest that abnormalities in O-glycosylation alter mucosal immunity and B lymphocyte homing, pointing to an expanded role of aberrant O-glycosylation in the pathogenesis of IgAN.</p>\",\"PeriodicalId\":15469,\"journal\":{\"name\":\"Journal of Clinical Investigation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/JCI181164\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI181164","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Loss of GalNAc-T14 links O-glycosylation defects to alterations in B cell homing in IgA nephropathy.
Aberrant O-glycosylation of the IgA1 hinge region is a characteristic finding in patients with IgA nephropathy (IgAN) and is thought to contribute to immune-complex formation and kidney injury. Other studies have suggested that abnormalities in mucosal immunity and lymphocyte homing are major contributors to disease. We identified a family with IgAN segregating a heterozygous predicted loss-of-function (LOF) variant in GALNT14, the gene encoding N-acetylgalactosaminyltransferase 14, one of the enzymes involved in mucin-type protein O-glycosylation. While GALNT14 is expressed in IgA1-producing cells, carriers of the LOF variant did not have altered levels of poorly glycosylated IgA1, suggesting other disease mechanisms. Investigation of Galnt14 null mice revealed elevated serum IgA levels and ex vivo IgA production by B cells. These mice developed glomerular IgA deposition with aging and after induction of sterile colitis. Galnt14 null mice also displayed an attenuated mucin layer in the colon and redistribution of IgA-producing cells from mucosal to systemic sites. Adoptive-transfer experiments indicated impaired homing of spleen-derived Galnt14 deficient B lymphocytes, resulting in increased retention in peripheral blood. These findings suggest that abnormalities in O-glycosylation alter mucosal immunity and B lymphocyte homing, pointing to an expanded role of aberrant O-glycosylation in the pathogenesis of IgAN.
期刊介绍:
The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science.
The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others.
The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.