{"title":"Using Circadian Rhythm Patterns of Continuous Core Body Temperature to Improve Fertility and Pregnancy Planning.","authors":"Wade W Webster, Benjamin Smarr","doi":"10.5334/jcr.200","DOIUrl":"https://doi.org/10.5334/jcr.200","url":null,"abstract":"<p><strong>Objective: </strong>Review relationships among circadian clocks, core body temperature (CBT), and fertility in women.</p><p><strong>Methods: </strong>Scoping literature review.</p><p><strong>Results: </strong>Circadian clocks are a ubiquitous adaptation to the most predictable environmental events - the daily cycles of light and dark. Core body temperature (CBT) also follows a circadian rhythm. Additionally, CBT is tightly controlled by a combination of neuronal circuits that begin in the hypothalamus and involve many other portions of the brain as well as a wide range of peripheral mechanisms. In women with normal reproductive function, the diurnal temperature pattern for CBT is strongly influenced by the menstrual cycle of reproductive hormones, primarily estradiol and progesterone, which modulate the activity of hypothalamic neural circuits involved in body temperature control, resulting in an infradian CBT rhythm.</p><p><strong>Conclusions: </strong>Analysis of CBT via continuous recording reveals patterns in the interactions of circadian and infradian CBT rhythms capable of accurately predicting the fertility window and hormonal patterns suggesting oligo-ovulation and subfertility. New wearable technologies can facilitate employment of hormone-associated changes in CBT for pregnancy planning and offer clinical insight to infertility and menopause.</p>","PeriodicalId":15461,"journal":{"name":"Journal of Circadian Rhythms","volume":"18 ","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2020-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518073/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38557670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mojtaba Elhami Athar, Mohammad-Kazem Atef-Vahid, Ahmad Ashouri
{"title":"The Influence of Shift Work on the Quality of Sleep and Executive Functions.","authors":"Mojtaba Elhami Athar, Mohammad-Kazem Atef-Vahid, Ahmad Ashouri","doi":"10.5334/jcr.194","DOIUrl":"https://doi.org/10.5334/jcr.194","url":null,"abstract":"<p><p>Shift work is an inconsistent and atypical work schedule. This study aimed to investigate the influence of shift work on the Quality of Sleep (QOS) and Executive Functions (EF). Thirty shift workers and thirty day workers first completed a demographic questionnaire. They then were tested using the Pittsburgh Sleep Quality Index (PSQI) and EF tests, including the Corsi Block-Tapping Task (CBTT), Berg's Card Sorting Task (BCST), and the Continuous Performance Task (CPT). Results were subjected to non-parametric Chi-Square Tests, the Mann-Whitney U Test, and Independent T-Tests. Shift workers had significantly poorer sleep quality than day workers, which was shown in PSQI global scale (<i>p</i> = 0.001), sleep duration (<i>p</i> = 0.042), habitual sleep efficiency (<i>p</i> = 0.021), and sleep disturbance (<i>p</i> = 0.021). Concerning EF tests, shift workers performed significantly poorer on CBTT (<i>p</i> = 0.019) and BCST (<i>p</i> = 0.015, 0.047) compared with day workers. Significant differences were also observed between shift workers and day workers in terms of variables of omission errors (<i>p</i> = 0.037) and commission errors (<i>p</i> = 0.041) on CPT, but no significant difference was found between shift workers and day workers in reaction time (<i>p</i> = 0.561). Shift work impaired EF. These findings are related to shift workers' poorer sleep and its detrimental effects on areas of the brain, which are critical for EF, such as the prefrontal area. Our results suggest the evaluation and implication of practices and policies to assuage the consequences of working in shifts.</p>","PeriodicalId":15461,"journal":{"name":"Journal of Circadian Rhythms","volume":"18 ","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2020-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7319068/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38103393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Diurnal Preference and Grey Matter Volume in a Large Population of Older Adults: Data from the UK Biobank.","authors":"Ray Norbury","doi":"10.5334/jcr.193","DOIUrl":"https://doi.org/10.5334/jcr.193","url":null,"abstract":"<p><p>Eveningness (a diurnal preference for evening time) is associated with a number of negative health outcomes and risk and prevalence for psychiatric disorder. Our understanding of the anatomical substrates of diurnal preference, however, is limited. The current study used Voxel-Based Morphometry to compare grey matter volume in a large sample (<i>N</i> = 3730) of healthy adults determined by questionnaire to be either definite morning-type or definite evening-type. Eveningness was associated with increased grey matter volume in precuneus, brain regions implicated in risk and reward processing (bilateral nucleus accumbens, caudate, putamen and thalamus) and orbitofrontal cortex. These results indicate an anatomical-basis for diurnal preference which may underlie reported differences in behaviour and brain function observed in these individuals.</p>","PeriodicalId":15461,"journal":{"name":"Journal of Circadian Rhythms","volume":"18 ","pages":"3"},"PeriodicalIF":0.0,"publicationDate":"2020-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7207247/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37934167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Why We Sleep: A Hypothesis for an Ultimate or Evolutionary Origin for Sleep and Other Physiological Rhythms.","authors":"Andrew S Freiberg","doi":"10.5334/jcr.189","DOIUrl":"https://doi.org/10.5334/jcr.189","url":null,"abstract":"<p><p>Although sleep is ubiquitous, its evolutionary purpose remains elusive. Though every species of animal, as well as many plants sleep, theories of its origin are purely physiological, e.g. to conserve energy, make repairs or to consolidate learning. An evolutionary reason for sleep would answer one of biology's fundamental unanswered questions. When environmental conditions change on a periodic basis (winter/summer, day/night) organisms must somehow confront the change or else be less able to compete in either niche. Seasonal adaptation includes the migration of birds, changes in honeybee physiology and winter abscission in plants. Diurnal adaptation must be more rapid, forcing changes in behavior in addition to physiology. Since organisms must exist in both environments, evolution has created a way to force a change in behavior, in effect creating \"different\" organisms (one awake, one asleep) adapted separately to two distinct niches. We sleep to allow evolving into two competing niches. The physiology of sleep forces a change to a different state for the second niche. The physiological needs for sleep are mechanisms that have evolved to achieve this goal.</p>","PeriodicalId":15461,"journal":{"name":"Journal of Circadian Rhythms","volume":"18 ","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2020-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7120898/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37816145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Olubodun Michael Lateef, Michael Olawale Akintubosun
{"title":"Sleep and Reproductive Health.","authors":"Olubodun Michael Lateef, Michael Olawale Akintubosun","doi":"10.5334/jcr.190","DOIUrl":"https://doi.org/10.5334/jcr.190","url":null,"abstract":"<p><p>The reproductive function of humans is regulated by several sex hormones which are secreted in synergy with the circadian timing of the body. Sleep patterns produce generic signatures that physiologically drive the synthesis, secretion, and metabolism of hormones necessary for reproduction. Sleep deprivation among men and women is increasingly reported as one of the causes of infertility. In animal models, sleep disturbances impair the secretion of sexual hormones thereby leading to a decrease in testosterone level, reduced sperm motility and apoptosis of the Leydig cells in male rats. Sleep deprivation generates stressful stimuli intrinsically, due to circadian desynchrony and thereby increases the activation of the Hypothalamus-Pituitary Adrenal (HPA) axis, which, consequently, increases the production of corticosterone. The elevated level of corticosteroids results in a reduction in testosterone production. Sleep deprivation produces a commensurate effect on women by reducing the chances of fertility. Sleeplessness among female shift workers suppresses melatonin production as well as excessive HPA activation which results in early pregnancy loss, failed embryo implantation, anovulation and amenorrhea. Sleep deprivation in women has also be found to be associated with altered gonadotropin and sex steroid secretion which all together lead to female infertility. Poor quality of sleep is observed in middle-aged and older men and this also contributes to reduced testosterone concentrations. The influence of sleep disturbances post-menopausal is associated with irregular synthesis and secretion of female sex steroid hormones.</p>","PeriodicalId":15461,"journal":{"name":"Journal of Circadian Rhythms","volume":"18 ","pages":"1"},"PeriodicalIF":0.0,"publicationDate":"2020-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7101004/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37809724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Kezeli, N. Gongadze, G. Sukoyan, Marina Shikhashvili, Z. Chapichadze, M. Okujava, N. Dolidze
{"title":"Circadian Variation in Vasoconstriction and Vasodilation Mediators and Baroreflex Sensitivity in Hypertensive Rats","authors":"T. Kezeli, N. Gongadze, G. Sukoyan, Marina Shikhashvili, Z. Chapichadze, M. Okujava, N. Dolidze","doi":"10.5334/jcr.185","DOIUrl":"https://doi.org/10.5334/jcr.185","url":null,"abstract":"The purpose of this study was to evaluate the relationship between the circadian profile of the vasorelaxing substances calcitonin gene-related peptide (CGRP) and epoxyeicosatrienoic acids (EETs) and the vasconstrictive agent endothelin-1 (ET1) and the daily rhythms of cardiac hemodynamic indices (CHI) and baroreflex (BRS) in Wistar rats with 1 kidney-1 clip model of arterial hypertension (1K-1C AH). The animals were divided into 3 groups: I- sham-operated (SO), II- 4-week and III- 8-week 1K-1C AH rats. Plasma concentration of ET1, CGRP and EET’s were investigated every 4 h. In conscious freely moving 1K-1C AH rats unlike SO animals blood pressure (BP), heart period (HP) and BRS underwent significant circadian fluctuations, with more marked increase in mean values of BP in 8-week hypertensive rats in comparison to 4-week hypertensive rats (179 ± 5 vs. 162 ± 4 mm Hg, p < 0.05). These alterations correlated with more significant reduction in HP (138 ± 5 vs. 150 ± 6 ms, p < 0,05) and BRS (0.44 ± 0.04 vs. 0.58 ± 0.04 ms mm Hg–1, p < 0.05) in 8-week 1K-1C AH rats. The acrophases of BP in 8-week 1K-1C AH rats in comparison with 4-week were shifted to more late night hours (1:58 a.m. vs. 11:32 p.m.) and in both groups of animals corresponded to lowest circadian plasma levels of CGRP and EETs and to greatest level of ET1. SO rats were characterized by lower values of BP (121 ± 3 mm Hg, p < 0,05) and higher indices of HP (158 ± 2 ms, p < 0,05) and BRS (0.86 ± 0.02 ms mmHg–1, p < 0,001) in comparison with 1K-1C AH rats 4-week duration. The acrophases of BP, HP and BRS in hypertensive animals were revealed at 14.8 ± 0.5 h, 13.6 ± 0.4 h and 13.1 ± 0.2 h, which correlated with maximal circadian contents of ET1 and CGRP at 24:00 h and EETs at 12:00 h and were shifted in comparison to sham-operated group. In rats with 1K-1C AH, plasma levels of ET1, CGRP and EETs undergo circadian fluctuation with corresponding alterations in CHI and BRS which are more markedly expressed on the late stage of diseases and could be used in future for predictive, preventive, and personalized treatment of arterial hypertension.","PeriodicalId":15461,"journal":{"name":"Journal of Circadian Rhythms","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42351928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kamila Weissová, Jitka Škrabalová, K. Skálová, Z. Bendová, J. Kopřivová
{"title":"The Effect of a Common Daily Schedule on Human Circadian Rhythms During the Polar Day in Svalbard: A Field Study","authors":"Kamila Weissová, Jitka Škrabalová, K. Skálová, Z. Bendová, J. Kopřivová","doi":"10.5334/jcr.186","DOIUrl":"https://doi.org/10.5334/jcr.186","url":null,"abstract":"All Arctic visitors have to deal with extreme conditions, including a constant high light intensity during the summer season or constant darkness during winter. The light/dark cycle serves as the most potent synchronizing signal for the biological clock, and any Arctic visitor attending those regions during winter or summer would struggle with the absence of those entraining signals. However, the inner clock can be synchronized by other zeitgebers such as physical activity, food intake, or social interactions. Here, we investigated the effect of the polar day on the circadian clock of 10 researchers attending the polar base station in the Svalbard region during the summer season. The data collected in Svalbard was compared with data obtained just before leaving for the expedition (in the Czech Republic 49.8175°N, 15.4730°E). To determine the circadian functions, we monitored activity/rest rhythm with wrist actigraphy followed by sleep diaries, melatonin rhythm in saliva, and clock gene expression (Per1, Bmal1, and Nr1D1) in buccal mucosa samples. Our data shows that the two-week stay in Svalbard delayed melatonin onset but did not affect its rhythmic secretion, and delayed the activity/rest rhythm. Furthermore, the clock gene expression displayed a higher amplitude in Svalbard compared to the amplitude detected in the Czech Republic. We hypothesize that the common daily schedule at the Svalbard expedition strengthens circadian rhythmicity even in conditions of compromised light/dark cycles. To our knowledge, this is the first study to demonstrate peripheral clock gene expression during a polar expedition.","PeriodicalId":15461,"journal":{"name":"Journal of Circadian Rhythms","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42095280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Corina Weidenauer, Christian Vollmer, K. Scheiter, C. Randler
{"title":"Weak Associations of Morningness-Eveningness and Stability with Skin Temperature and Cortisol Levels","authors":"Corina Weidenauer, Christian Vollmer, K. Scheiter, C. Randler","doi":"10.5334/jcr.182","DOIUrl":"https://doi.org/10.5334/jcr.182","url":null,"abstract":"Differences in daytime preferences can be described on the dimension of morningness-eveningness (continuous) or circadian typology (categorical) and are associated with our physiological functioning, which is reflected in body temperature and cortisol levels in the morning. The purpose of the present study was to explore the relationship between morningness-eveningness, stability and physiological markers (body temperature and cortisol) based on a three-dimensional conceptualization of morningness-eveningness using the Morningness-Eveningness-Stability Scale improved (MESSi). In contrast to previously used unidimensional measures, the MESSi determines circadian typology and its amplitude in three dimensions: Morning affect (MA), Eveningness (EV) and Stability/Distinctness (DI). Furthermore, the differences of the cortisol levels between weekday and weekend were examined. The sample (N = 42) consisted of extreme chronotypes (age 18–54 years; M = 24.8 years, SD = 5.83; 22 morning types [5 men and 17 women] and 20 evening types [8 men and 12 women]). The participants were asked to measure their skin temperature for one week and sample four saliva probes for cortisol determination. Morning types showed a better fit in the actual temperature data to the approximating data as compared to Evening types and showed a higher overall temperature. The Stability/Distinctness (DI) component of the MESSi was negatively correlated with the nadir. Morning types also showed higher cortisol levels than Evening types immediately after awakening. The cortisol levels were higher on a weekday compared to the weekend. To conclude, the present findings demonstrate that the skin temperature is weakly associated with morningness-eveningness and the stability of the circadian phase.","PeriodicalId":15461,"journal":{"name":"Journal of Circadian Rhythms","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43152668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cathalijn H C Leenaars, W H Pim Drinkenburg, Christ Nolten, Maurice Dematteis, Ruud N J M A Joosten, Matthijs G P Feenstra, Rob B M De Vries
{"title":"Sleep and Microdialysis: An Experiment and a Systematic Review of Histamine and Several Amino Acids.","authors":"Cathalijn H C Leenaars, W H Pim Drinkenburg, Christ Nolten, Maurice Dematteis, Ruud N J M A Joosten, Matthijs G P Feenstra, Rob B M De Vries","doi":"10.5334/jcr.183","DOIUrl":"https://doi.org/10.5334/jcr.183","url":null,"abstract":"<p><p>Sleep seems essential to proper functioning of the prefrontal cortex (PFC). The role of different neurotransmitters has been studied, mainly the catecholamines and serotonin. Less attention has been paid to the amino acid transmitters and histamine. Here, we focus on the activity of these molecules in the PFC during sleep and sleep deprivation (SD). We determined extracellular concentrations of histamine and 8 amino acids in the medial PFC before, during and after SD. Additionally, we systematically reviewed the literature on studies reporting microdialysis measurements relating to sleep throughout the brain. In our experiment, median concentrations of glutamate were higher during SD than during baseline (p = 0.013) and higher during the dark-active than during the resting phase (p = 0.003). Glutamine was higher during post-SD recovery than during baseline (p = 0.010). For other compounds, no differences were observed between light and dark circadian phase, and between sleep deprivation, recovery and baseline. We retrieved 13 papers reporting on one or more of the molecules of interest during naturally occurring sleep, 2 during sleep deprivation and 2 during both. Only two studies targeted PFC. Histamine was low during sleep, but high during sleep deprivation and wakefulness, irrespective of brain area. Glu (k = 11) and GABA (k = 8) concentrations in different brain areas were reported to peak during sleep or wakefulness or to lack state-dependency. Aspartate, glycine, asparagine and taurine were less often studied (1-2 times), but peaked exclusively during sleep. Sleep deprivation increased glutamate and GABA exclusively in the cortex. Further studies are needed for drawing solid conclusions.</p>","PeriodicalId":15461,"journal":{"name":"Journal of Circadian Rhythms","volume":"17 ","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6611484/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37416758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tricia D LeVan, Peng Xiao, Gaurav Kumar, Kevin Kupzyk, Fang Qiu, David Klinkebiel, James Eudy, Kenneth Cowan, Ann M Berger
{"title":"Genetic Variants in Circadian Rhythm Genes and Self-Reported Sleep Quality in Women with Breast Cancer.","authors":"Tricia D LeVan, Peng Xiao, Gaurav Kumar, Kevin Kupzyk, Fang Qiu, David Klinkebiel, James Eudy, Kenneth Cowan, Ann M Berger","doi":"10.5334/jcr.184","DOIUrl":"10.5334/jcr.184","url":null,"abstract":"<p><strong>Introduction: </strong>Women diagnosed with breast cancer (BC) are at increased risk of sleep deficiency. Approximately 30-60% of these women report poor sleep during and following surgery, chemotherapy, radiation therapy, and anti-estrogen therapy. The purpose of this study was to examine the relationship between genetic variation in circadian rhythm genes and self-reported sleep quality in women with BC.</p><p><strong>Methods: </strong>This cross-sectional study recruited women with a first diagnosis of breast cancer at five sites in Nebraska and South Dakota. Sixty women were included in the study. Twenty-six circadian genes were selected for exome sequencing using the Nextera Rapid Capture Expanded Exome kit. 414 variants had a minor allele frequency of ≥5% and were included in the exploratory analysis. The association between Pittsburgh Sleep Quality Index (PSQI) score and genetic variants was determined by two-sample t-test or ANOVA.</p><p><strong>Results: </strong>Twenty-five variants were associated with the PSQI score at p < 0.10, of which 19 were significant at p<0.05, although the associations did not reach statistical significance after adjustment for multiple comparisons. Variants associated with PSQI were from genes CSNK1D & E, SKP1, BHLHE40 & 41, NPAS2, ARNTL, MYRIP, KLHL30, TIMELESS, FBXL3, CUL1, PER1&2, RORB. Two genetic variants were synonymous or missense variants in the BHLHE40 and TIMELESS genes, respectively.</p><p><strong>Conclusions: </strong>These exploratory results demonstrate an association of genetic variants in circadian rhythm pathways with self-reported sleep in women with BC. Testing this association is warranted in a larger replication population.</p>","PeriodicalId":15461,"journal":{"name":"Journal of Circadian Rhythms","volume":"17 ","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6611482/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37416756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}