S. Mohammadi, E. Khodapanah, S. A. Tabatabaei-Nejad
{"title":"Simulation Study of Salinity Effect on Polymer Flooding in Core Scale","authors":"S. Mohammadi, E. Khodapanah, S. A. Tabatabaei-Nejad","doi":"10.22059/JCHPE.2019.256123.1231","DOIUrl":"https://doi.org/10.22059/JCHPE.2019.256123.1231","url":null,"abstract":"In this study, simulation of low salinity polymer flooding in the core scale is investigated using Eclipse-100 simulator. For this purpose, two sets of data are used. The first set of data were adopted from the results of experimental studies conducted at the University of Bergen, performed using Berea sandstone and intermediate oil. The second data set, related to sand pack and heavy oil system, was obtained from experiments performed at Sahand Oil and Gas Research Institute. To obtain relative permeability and capillary pressure curves, automatic history matching is implemented by coupling Eclipse-100 and MATLAB software. Three different correlations are used for relative permeability. The parameters of each model are calculated using four different optimization algorithms, including Levenberg-Marquardt, Trust-region, Fminsearch, and Pattern search. The results showed that regardless of the optimization algorithm being used, applying relative permeability model of Lomeland et al., known as LET model, best matches the experimental oil recovery data in comparison with those of Corey and Skjeaveland et al.’s relative permeability correlations. The LET model and the Trust-region algorithm were selected for simulation of low salinity polymer flooding process. Simulation of the first set of data showed that using low salinity water flooding before polymer flooding, oil recovery was increased about 16%. In addition, using the second set of data, simulation of low salinity polymer flooding scenario is investigated in a long core model, taken from one of the southwestern fields of Iran. Simulation results show an increase of about 34% in the recovery of low salinity polymer flooding compared to the water flooding scenario.","PeriodicalId":15333,"journal":{"name":"Journal of Chemical and Petroleum Engineering","volume":"2 1","pages":"137-152"},"PeriodicalIF":0.0,"publicationDate":"2019-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88297314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CFD Simulation of Porosity and Particle Diameter Influence on Wall-to-Bed Heat Transfer in Trickle Bed Reactors","authors":"A. Heidari, P. Shamlou","doi":"10.22059/JCHPE.2019.276544.1270","DOIUrl":"https://doi.org/10.22059/JCHPE.2019.276544.1270","url":null,"abstract":"Wall-to-bed (or wall-to-fluid) heat transfer issues in trickle bed reactors (TBR) has an important impact on operation and efficiency in this category of reactors. In this study, the hydrodynamic and thermal behavior of trickle bed reactors was simulated by means of computational fluid dynamics (CFD) technique. The multiphase behavior of trickle bed reactor was studied by the implementation of the Eulerian-Eulerian multiphase approach. Also, bed porosity effect was modeled by porosity function method. In order to study the effect of operating parameters on wall-to-bed heat transfer, the influence of catalyst particle diameter and catalytic bed porosity was investigated on wall-to-bed Nu number. The results showed that the enhancement of catalytic bed porosity from 0.36 to 0.5 decreases the Nu number about 15% due to a reduction of liquid velocity adjacent to the reactor wall. Also, the increase of particle diameter from 4 to 6 millimeter decreases wall-to-bed Nu number about 15% owing to a reduction in liquid phase volume fraction.","PeriodicalId":15333,"journal":{"name":"Journal of Chemical and Petroleum Engineering","volume":"136 1","pages":"111-121"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86418282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Absolute Permeability Calculation by Direct Numerical Simulation in Porous Media","authors":"M. Rasaei, Fahime Firoozpour","doi":"10.22059/JCHPE.2019.273826.1265","DOIUrl":"https://doi.org/10.22059/JCHPE.2019.273826.1265","url":null,"abstract":"Simulating fluid flow at micro level is an ongoing problem. Simplified macroscopic flow models like Darcy’s law is unable to estimate fluid dynamic properties of porous media. The digital sample reconstruction by high resolution X-ray computed tomography scanning and fluid-dynamics simulation, together with the increasing power of super-computers, allow to carry out pore-scale simulations through digitally-reconstructed porous samples. The pore-scale flows which derived from computational fluid dynamic are then evaluated using the finite volume method implemented in the open-source platform OpenFOAM®. In this work to verify the solver in porous media we simulated fluid flow around sphere in body-centered cubic (bcc) lattice and calculated the dimensionless permeability for a wide range of radius and porosity; the results are comparable with those obtained by using carman-kozeny equation. Then this solver is performed on realistic sample to investigate the effect of sample size on calculated permeability and tortuosity and the mesh refinement levels for a fixed image resolution.","PeriodicalId":15333,"journal":{"name":"Journal of Chemical and Petroleum Engineering","volume":"4 1","pages":"91-100"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85521266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"To Depict Oil Extraction Efficiency from Gas Invaded Zone: Simulation Study","authors":"Ahmed Zoeir, M. Reyhani, M. Simjoo","doi":"10.22059/JCHPE.2019.264737.1246","DOIUrl":"https://doi.org/10.22059/JCHPE.2019.264737.1246","url":null,"abstract":"Future exploitation scheme of an oil reservoir in each cycle within its production life depends on the profitability of the current extraction scenario compared with predicted recoveries that acquire with applying other available methods. In fractured reservoirs appropriate time to pass from the gas injection process into chemical enhanced oil recovery (EOR) firmly depends on the oil extraction efficiency within the gas invaded zone. Several variables including fluid characteristic, fracture network and matrix units properties, etc., impact gas-oil gravity drainage (GOGD) performance within the gas invaded zone. In this work, CMG GEM and ECLIPSE 300 were used to simulate GOGD mechanism in several 2D cross-sectional models to investigate effects of the matrix height, matrix rock type, fracture network transmissibility, and miscibility conditions on the oil extraction rate, change of average pressure and producing gas-oil ratio (GOR). Results showed that in small heights of the matrix units especially at compacted rock types, GOGD was weak that caused a rapid decrease in oil production rates and early increase in producing GOR. Results also showed that wherever the matrix porosity and permeability values were high, recovery was accelerated and GOR remained constant for longer exploitation times. Furthermore, using high-pressure lean gas injection for miscible GOGD gives higher extraction efficiencies rather than applying rich or enriched gas.","PeriodicalId":15333,"journal":{"name":"Journal of Chemical and Petroleum Engineering","volume":"1 1","pages":"11-24"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83696143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Piezoceramic Element Design and Fabrication for Ultrasonic Transducer of Gas Meter","authors":"Seyed Foad Mousavi, S. Hashemabadi","doi":"10.22059/JCHPE.2019.272687.1260","DOIUrl":"https://doi.org/10.22059/JCHPE.2019.272687.1260","url":null,"abstract":"Ultrasonic transducers play a significant role in generating and receiving the acoustic waves in ultrasonic flowmeters. Depending on the required accuracy, the ultrasonic transducers can be installed either in one pair or more in an ultrasonic flowmeter. The main part of an ultrasonic transducer is its piezoceramic element. In this work, four piezoceramic elements with different diameter to thickness ratio were fabricated and one of them with center frequency of 200 kHz was selected for the numerical simulations. The piezoceramic element and its gaseous propagation environment were simulated numerically using the finite element method. Similar to the experiments, air was considered as the propagation medium and PZT-5H was used as the piezoceramic element. The results showed that the numerical simulation is in good agreement with the experimental data which indicates that numerical simulation could be an efficient alternative way to reduce trial and errors. It leads to good results if reasonable assumptions are used.","PeriodicalId":15333,"journal":{"name":"Journal of Chemical and Petroleum Engineering","volume":"26 1","pages":"63-71"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81171727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Numerical Study of the Effect of Aspect Ratio on Heat Transfer in an Annular Flow Through a 270-Degree Curved Pipe.","authors":"Mohammad Hossein Seraji, H. Khaleghi","doi":"10.22059/JCHPE.2019.275316.1268","DOIUrl":"https://doi.org/10.22059/JCHPE.2019.275316.1268","url":null,"abstract":"In the present paper, a three dimensional annular developing incompressible laminar flow through 270- degree curved pipe is numerically simulated. The dimensionless governing equations of continuity, momentums and energy are driven in toroidal coordinates. The governing equations are discretized by projection algorithm using forward difference in time and central difference in space. A three-dimensional computer code together with a grid generation program are developed in toroidal coordinates by which the present results were obtained. There is a non-uniform heat source q˝=BeAθ in the solid core and the outer wall is assumed to be adiabatic. Considering the effect of Reynolds number on thermo-hydraulic properties such as formation of secondary flow and axial velocity, it is possible to increase heat transfer using a non-uniform heat flux instead of the uniform one. The numerical results indicated that the average Nusselt number is increased by non- uniform heat flux compared with the uniform one assuming that both have the same average flux values. Also, the results indicate heat transfer increases as the aspect ratio is reduced.","PeriodicalId":15333,"journal":{"name":"Journal of Chemical and Petroleum Engineering","volume":"30 1","pages":"101-110"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81191309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical Simulation of a Lead-Acid Battery Discharge Process using a Developed Framework on Graphic Processing Units","authors":"H. M. Darian","doi":"10.22059/JCHPE.2019.273049.1261","DOIUrl":"https://doi.org/10.22059/JCHPE.2019.273049.1261","url":null,"abstract":"In the present work, a framework is developed for implementation of finite difference schemes on Graphic Processing Units (GPU). The framework is developed using the CUDA language and C++ template meta-programming techniques. The framework is also applicable for other numerical methods which can be represented similar to finite difference schemes such as finite volume methods on structured grids. The framework supports both linear and nonlinear finite difference stencils. Furthermore, the arithmetic operators and math functions are overloaded to ease the array-based computations on GPUs. The reduction algorithms are also efficiently included in the framework. The discharge process of a lead-acid battery cell is simulated using the facilities provided by the framework. The governing equations are unsteady and include two nonlinear diffusion equations for solid (electrode) and liquid (electrolyte) potentials and three transient equations for acid concentration, porosity and the state of charge. The equations are discretized using the finite volume method. The framework allows the user to develop the numerical solver with a few efforts. The numerical simulation results are reported for different relations for open circuit potential and the electrolyte diffusion coefficient","PeriodicalId":15333,"journal":{"name":"Journal of Chemical and Petroleum Engineering","volume":"10 1","pages":"73-80"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73989970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of Structural Changes on Corrosion Inhibition Behavior of Synthesized N2O4 Imine Compounds for Steel Pipelines in Oil and Gas Wells","authors":"N. B. Panah, I. Danaee","doi":"10.22059/JCHPE.2019.232647.1193","DOIUrl":"https://doi.org/10.22059/JCHPE.2019.232647.1193","url":null,"abstract":"The inhibition properties of synthesized imine compounds N,Nʹ-bis(2,4-dihydroxyhydroxybenzaldehyde)-1,3-Propandiimine, N, N′-bis(2,4-dihydroxypropiophenone)-2,2-dimethylpropandiimine, N,Nʹ-bis(2,4-dihydroxyacetophenone)-1,3-Propandiimine has been investigated for API-5L-X65 steel corrosion in hydrochloric acid by scanning electron microscopy, potentiodynamic polarization and impedance spectroscopy. Aqueous hydrochloric acid was applied to simulate the oil and gas well acidizing fluid. Potentiodynamic polarization studies indicated that compounds retard both the anodic and cathodic reactions through adsorption and blocking the active corrosion sites. The inhibition efficiency increased with inhibitor concentration. Electrochemical impedance spectroscopy data were studied by equivalent circuit and showed that with increasing inhibitor concentration, the resistance of charge transfer enhanced and the capacitance of double layer reduced. The measured data proposed that the inhibition efficacy was increased for inhibitor in the absence of alkyl addition. The geometrical steric hindrance offered by the alkyl groups in the imine compounds plays an important role in its corrosion inhibition properties. Scanning electron microscopy was used to study the steel surface with and without inhibitors.","PeriodicalId":15333,"journal":{"name":"Journal of Chemical and Petroleum Engineering","volume":"9 1","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74814656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study of Torque, Drag and Hydraulics of a Deviated Drilled Well using Drilling Office Software","authors":"A. S. Dehaghani, Saeed Karami, M. Golriz","doi":"10.22059/JCHPE.2019.267089.1253","DOIUrl":"https://doi.org/10.22059/JCHPE.2019.267089.1253","url":null,"abstract":"Rotational drilling was a revolution in drilling technology. It made the drilling process more efficient and faster and more depth of well could be achieved through rotation method. Besides all of its advantages, the rotation approach induced some problems like pipe sticking and downhole cleaning to the drilling procedure. Hole cleaning and reduction of torque and drag seems to be vital in inclined and horizontal ones due to its complexity and inclination. In this manuscript, hydraulic, torque and drag analysis were surveyed to investigate whether the path proposed for a well in the south of Iran is adequate or not. The required information was provided from associated drilling company and the proposed well trajectory used with hydraulic and drag data to run simulations via drilling office software. Effective axial load, Interaction of well and drill string, Comparison of stresses and von Mises graph were reported. Mentioned graphs showed the consistency of drilling project. The sensitivity of pressure drop to the pump flow rate and critical required rate to clean up annulus also reported pressure drop through the drilling system and required flow rate to clean up the bottom hole. In another word, obtained results of drag and hydraulic showed the consistency of trajectory.","PeriodicalId":15333,"journal":{"name":"Journal of Chemical and Petroleum Engineering","volume":"85 1","pages":"53-62"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79861240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative Analysis of a Single Fuel Droplet Evaporation","authors":"S. Jafari, H. Khaleghi, R. Maddahian","doi":"10.22059/JCHPE.2019.273934.1264","DOIUrl":"https://doi.org/10.22059/JCHPE.2019.273934.1264","url":null,"abstract":"In this research, the results of comparative analysis of a single fuel droplet evaporation models are presented. Three well-known evaporation models including Spalding, Borman-Johnson and Abramzon-Sirignano models are analyzed using Computational Fluid Dynamic (CFD). The original Spalding model is extended to consider the effects of the Stefan flow, unsteady vaporization, and variable properties. The evaporation models are validated using already existing experimental data. Numerical results show that the Spalding model overestimates the temperature of the droplet surface in comparison with the other two models, although some modifications were made in the aforementioned model. Our final evaluation concludes that Abramzon-Sirignano model predictions are in good agreement with the experimental data. Therefore, in this paper, this model is used for the parametric study of the effects of droplet size, ambient temperature and pressure on the droplet lifetime and temperature. Results indicate that by increasing the droplet size, the lifetime of the droplets will increase and the steady-state droplet temperature is higher at higher ambient pressures and temperature.","PeriodicalId":15333,"journal":{"name":"Journal of Chemical and Petroleum Engineering","volume":"25 1","pages":"81-90"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86887005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}