{"title":"Piezoceramic Element Design and Fabrication for Ultrasonic Transducer of Gas Meter","authors":"Seyed Foad Mousavi, S. Hashemabadi","doi":"10.22059/JCHPE.2019.272687.1260","DOIUrl":null,"url":null,"abstract":"Ultrasonic transducers play a significant role in generating and receiving the acoustic waves in ultrasonic flowmeters. Depending on the required accuracy, the ultrasonic transducers can be installed either in one pair or more in an ultrasonic flowmeter. The main part of an ultrasonic transducer is its piezoceramic element. In this work, four piezoceramic elements with different diameter to thickness ratio were fabricated and one of them with center frequency of 200 kHz was selected for the numerical simulations. The piezoceramic element and its gaseous propagation environment were simulated numerically using the finite element method. Similar to the experiments, air was considered as the propagation medium and PZT-5H was used as the piezoceramic element. The results showed that the numerical simulation is in good agreement with the experimental data which indicates that numerical simulation could be an efficient alternative way to reduce trial and errors. It leads to good results if reasonable assumptions are used.","PeriodicalId":15333,"journal":{"name":"Journal of Chemical and Petroleum Engineering","volume":"26 1","pages":"63-71"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical and Petroleum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/JCHPE.2019.272687.1260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrasonic transducers play a significant role in generating and receiving the acoustic waves in ultrasonic flowmeters. Depending on the required accuracy, the ultrasonic transducers can be installed either in one pair or more in an ultrasonic flowmeter. The main part of an ultrasonic transducer is its piezoceramic element. In this work, four piezoceramic elements with different diameter to thickness ratio were fabricated and one of them with center frequency of 200 kHz was selected for the numerical simulations. The piezoceramic element and its gaseous propagation environment were simulated numerically using the finite element method. Similar to the experiments, air was considered as the propagation medium and PZT-5H was used as the piezoceramic element. The results showed that the numerical simulation is in good agreement with the experimental data which indicates that numerical simulation could be an efficient alternative way to reduce trial and errors. It leads to good results if reasonable assumptions are used.