基于图形处理单元的铅酸蓄电池放电过程的数值模拟

Q4 Chemical Engineering
H. M. Darian
{"title":"基于图形处理单元的铅酸蓄电池放电过程的数值模拟","authors":"H. M. Darian","doi":"10.22059/JCHPE.2019.273049.1261","DOIUrl":null,"url":null,"abstract":"In the present work, a framework is developed for implementation of finite difference schemes on Graphic Processing Units (GPU). The framework is developed using the CUDA language and C++ template meta-programming techniques. The framework is also applicable for other numerical methods which can be represented similar to finite difference schemes such as finite volume methods on structured grids. The framework supports both linear and nonlinear finite difference stencils. Furthermore, the arithmetic operators and math functions are overloaded to ease the array-based computations on GPUs. The reduction algorithms are also efficiently included in the framework. The discharge process of a lead-acid battery cell is simulated using the facilities provided by the framework. The governing equations are unsteady and include two nonlinear diffusion equations for solid (electrode) and liquid (electrolyte) potentials and three transient equations for acid concentration, porosity and the state of charge. The equations are discretized using the finite volume method. The framework allows the user to develop the numerical solver with a few efforts. The numerical simulation results are reported for different relations for open circuit potential and the electrolyte diffusion coefficient","PeriodicalId":15333,"journal":{"name":"Journal of Chemical and Petroleum Engineering","volume":"10 1","pages":"73-80"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Simulation of a Lead-Acid Battery Discharge Process using a Developed Framework on Graphic Processing Units\",\"authors\":\"H. M. Darian\",\"doi\":\"10.22059/JCHPE.2019.273049.1261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present work, a framework is developed for implementation of finite difference schemes on Graphic Processing Units (GPU). The framework is developed using the CUDA language and C++ template meta-programming techniques. The framework is also applicable for other numerical methods which can be represented similar to finite difference schemes such as finite volume methods on structured grids. The framework supports both linear and nonlinear finite difference stencils. Furthermore, the arithmetic operators and math functions are overloaded to ease the array-based computations on GPUs. The reduction algorithms are also efficiently included in the framework. The discharge process of a lead-acid battery cell is simulated using the facilities provided by the framework. The governing equations are unsteady and include two nonlinear diffusion equations for solid (electrode) and liquid (electrolyte) potentials and three transient equations for acid concentration, porosity and the state of charge. The equations are discretized using the finite volume method. The framework allows the user to develop the numerical solver with a few efforts. The numerical simulation results are reported for different relations for open circuit potential and the electrolyte diffusion coefficient\",\"PeriodicalId\":15333,\"journal\":{\"name\":\"Journal of Chemical and Petroleum Engineering\",\"volume\":\"10 1\",\"pages\":\"73-80\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical and Petroleum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22059/JCHPE.2019.273049.1261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical and Petroleum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/JCHPE.2019.273049.1261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在本工作中,开发了一个框架,用于在图形处理单元(GPU)上实现有限差分格式。该框架是使用CUDA语言和c++模板元编程技术开发的。该框架也适用于其他类似于有限差分格式的数值方法,如结构网格上的有限体积法。该框架支持线性和非线性有限差分模板。此外,还重载了算术运算符和数学函数,以减轻gpu上基于数组的计算。该框架还有效地包含了约简算法。利用该框架提供的设备对铅酸蓄电池的放电过程进行了模拟。控制方程是非定常的,包括固体(电极)和液体(电解质)电位的两个非线性扩散方程和酸浓度、孔隙率和电荷状态的三个瞬态方程。采用有限体积法对方程进行离散化。该框架允许用户用一些努力来开发数值求解器。本文报道了开路电位与电解液扩散系数的不同关系的数值模拟结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Simulation of a Lead-Acid Battery Discharge Process using a Developed Framework on Graphic Processing Units
In the present work, a framework is developed for implementation of finite difference schemes on Graphic Processing Units (GPU). The framework is developed using the CUDA language and C++ template meta-programming techniques. The framework is also applicable for other numerical methods which can be represented similar to finite difference schemes such as finite volume methods on structured grids. The framework supports both linear and nonlinear finite difference stencils. Furthermore, the arithmetic operators and math functions are overloaded to ease the array-based computations on GPUs. The reduction algorithms are also efficiently included in the framework. The discharge process of a lead-acid battery cell is simulated using the facilities provided by the framework. The governing equations are unsteady and include two nonlinear diffusion equations for solid (electrode) and liquid (electrolyte) potentials and three transient equations for acid concentration, porosity and the state of charge. The equations are discretized using the finite volume method. The framework allows the user to develop the numerical solver with a few efforts. The numerical simulation results are reported for different relations for open circuit potential and the electrolyte diffusion coefficient
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信