To Depict Oil Extraction Efficiency from Gas Invaded Zone: Simulation Study

Q4 Chemical Engineering
Ahmed Zoeir, M. Reyhani, M. Simjoo
{"title":"To Depict Oil Extraction Efficiency from Gas Invaded Zone: Simulation Study","authors":"Ahmed Zoeir, M. Reyhani, M. Simjoo","doi":"10.22059/JCHPE.2019.264737.1246","DOIUrl":null,"url":null,"abstract":"Future exploitation scheme of an oil reservoir in each cycle within its production life depends on the profitability of the current extraction scenario compared with predicted recoveries that acquire with applying other available methods. In fractured reservoirs appropriate time to pass from the gas injection process into chemical enhanced oil recovery (EOR) firmly depends on the oil extraction efficiency within the gas invaded zone. Several variables including fluid characteristic, fracture network and matrix units properties, etc., impact gas-oil gravity drainage (GOGD) performance within the gas invaded zone. In this work, CMG GEM and ECLIPSE 300 were used to simulate GOGD mechanism in several 2D cross-sectional models to investigate effects of the matrix height, matrix rock type, fracture network transmissibility, and miscibility conditions on the oil extraction rate, change of average pressure and producing gas-oil ratio (GOR). Results showed that in small heights of the matrix units especially at compacted rock types, GOGD was weak that caused a rapid decrease in oil production rates and early increase in producing GOR. Results also showed that wherever the matrix porosity and permeability values were high, recovery was accelerated and GOR remained constant for longer exploitation times. Furthermore, using high-pressure lean gas injection for miscible GOGD gives higher extraction efficiencies rather than applying rich or enriched gas.","PeriodicalId":15333,"journal":{"name":"Journal of Chemical and Petroleum Engineering","volume":"1 1","pages":"11-24"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical and Petroleum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/JCHPE.2019.264737.1246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Future exploitation scheme of an oil reservoir in each cycle within its production life depends on the profitability of the current extraction scenario compared with predicted recoveries that acquire with applying other available methods. In fractured reservoirs appropriate time to pass from the gas injection process into chemical enhanced oil recovery (EOR) firmly depends on the oil extraction efficiency within the gas invaded zone. Several variables including fluid characteristic, fracture network and matrix units properties, etc., impact gas-oil gravity drainage (GOGD) performance within the gas invaded zone. In this work, CMG GEM and ECLIPSE 300 were used to simulate GOGD mechanism in several 2D cross-sectional models to investigate effects of the matrix height, matrix rock type, fracture network transmissibility, and miscibility conditions on the oil extraction rate, change of average pressure and producing gas-oil ratio (GOR). Results showed that in small heights of the matrix units especially at compacted rock types, GOGD was weak that caused a rapid decrease in oil production rates and early increase in producing GOR. Results also showed that wherever the matrix porosity and permeability values were high, recovery was accelerated and GOR remained constant for longer exploitation times. Furthermore, using high-pressure lean gas injection for miscible GOGD gives higher extraction efficiencies rather than applying rich or enriched gas.
气侵带采油效率的模拟研究
油藏在其生产周期内的每个周期的未来开发方案取决于当前开采方案的盈利能力与应用其他可用方法获得的预测采收率的比较。在裂缝性油藏中,从注气过程过渡到化学提高采收率(EOR)的适当时间在很大程度上取决于气侵层内的采油效率。流体特性、裂缝网络、基质单元性质等变量影响着气侵层内油气重力泄放(GOGD)性能。利用CMG GEM和ECLIPSE 300在多个2D截面模型中模拟了GOGD机理,研究了基质高度、基质岩石类型、裂缝网络渗透率和混相条件对采油速率、平均压力变化和产气油比(GOR)的影响。结果表明,在较小高度的基质单元中,特别是在压实岩石类型中,GOGD较弱,导致采油速度迅速下降,生产GOR较早增加。结果还表明,基质孔隙度和渗透率越高,采收率越快,采收率保持不变的时间越长。此外,在混相GOGD中使用高压贫气注入比使用富气或富气获得更高的萃取效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信