Filza Hussain, G. Mustafa, Rabisa Zia, Ali Faiq, M. Matloob, Haseeb-ur-Rehman Shah, A. Raza, Jazib Ali Irfan
{"title":"Constructed Wetlands and their Role in Remediation of Industrial Effluents via Plant-Microbe Interaction – A Mini Review","authors":"Filza Hussain, G. Mustafa, Rabisa Zia, Ali Faiq, M. Matloob, Haseeb-ur-Rehman Shah, A. Raza, Jazib Ali Irfan","doi":"10.4172/2155-6199.1000447","DOIUrl":"https://doi.org/10.4172/2155-6199.1000447","url":null,"abstract":"Constructed wetlands (CWs) are an alternative method for wastewater treatment and its purification. In the past decades, CW techniques were hardly used for contamination removal, although first time in early 1950s, Dr. Kathe Seidel used constructed wetland for wastewater treatment. But evolutionary period started since the 1990s, this technique is used to treat various types of wastewaters i.e., industrial effluents, municipal wastewater, and drinking waters. CWs are the engineered systems that mimics the natural processes by removing the pollutants or by reducing the level of pollutants to a dischargeable limit. Constructed wetland treatment systems efficiently remove several kinds of pollutants from wastewater, drinking water, and industrial effluents within the controlled environment and are considered as environment-friendly. Removal of effluents, metal and waste are performed through a variety of processes i.e., by increasing sorption, hydrolysis, filtration and oxidation, precipitation, binding with iron oxide, microbial activity and uptake by plants. In response to removing pollution, constructed wetlands differ in their processes, cost effectiveness and their design and also enhance the waste removal performance by using different substrates i.e., Phosphorus (P). In the recent years, scientists have tried to remediate or clean up wastewater through phytoremediation and bioremediation. Constructed wetland treatment systems use microbes and rooted plants to remove contaminants from soil or wastewater. It takes advantage of natural wetland processes (biological, physical and chemical processes ) to remove contaminants but the efficiency of all the processes (Chemical, physical and Biological) differ with water residence time. This technology is now widely used (in America, China, Argentina, Czech Republic, Greece, Netherlands, and Europe) and tested to efficiently improve water quality. However, the industrial and environmental sector pay more attention to remove heavy metals form industrial effluents using CWs. CWs are more effective and have significantly low capital costs as compared to conventional system (ITRC 2003) and also require less labor and electricity to operated (USEPA 1988). The main objective of constructing the constructed wetland is to optimize the interaction of the substrate with microbial species and plants cells and then bioconversion into harmless products. The haplotype plants and microbes that are used in wastewater treatment not only accumulate heavy metals but also perform the function of catalysts for purification reaction. Several factors also influence the remediation process which includes plant transpiration, and growth rates, storage, and accumulation in root and leaf cells, sedimentation, pH of media. CWs are composed of one or two chambers which are filled with the substrate that support the growth of haplotype plants and microorganisms. The substrate is both directly and indirectly involved in the remed","PeriodicalId":15262,"journal":{"name":"Journal of Bioremediation and Biodegradation","volume":"600 1","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78951193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hallie Blevins, MKala D Blue, Brittany D Cobbs, Tessa A Ricotilli, S. L. Kyler, Clinton T Shuey, W. D. Thompson, S. F. Baron
{"title":"Characterization of an extracellular polyhydroxyalkanoate depolymerase from Streptomyces sp. SFB5A.","authors":"Hallie Blevins, MKala D Blue, Brittany D Cobbs, Tessa A Ricotilli, S. L. Kyler, Clinton T Shuey, W. D. Thompson, S. F. Baron","doi":"10.4172/2155-6199.1000452","DOIUrl":"https://doi.org/10.4172/2155-6199.1000452","url":null,"abstract":"A poly(-3-hydroxybutyrate) (PHB) degrading bacterium, Streptomyces sp. SFB5A, was isolated from hardwood mulch. It synthesized an extracellular poly(3-hydroxyalkanoate) (PHA) depolymerase during growth on PHB, poly(-3hydroxyvalerate) (PHV), PHB-PHV copolymer (PHBV), or 3-hydroxybutyrate. The purified enzyme had a subunit relative molecular weight of 47,000 and a broad pH optimum of 7.0 to 8.5; was stimulated by Ca+2 and Mg+2; and was inhibited by ethylenediaminetetraacetic acid, dithiothreitol, and non-ionic detergents. The enzyme degraded PHB, PHV, and PHBV to a mixture of monomers, dimers, and trimers, with monomers predominating. The level of trimers peaked and then decreased over time, suggesting that they were produced early and were subsequently degraded to monomers and dimers. The enzyme did not degrade poly(3-hydroxyoctanoate), indicating that it was a short-chain-length PHA depolymerase. The PHA depolymerase gene was cloned and sequenced. The deduced amino acid sequence included three features typical of extracellular PHA depolymerases: a catalytic domain type 1, a fibronectin type III linker domain, and a substrate-binding domain. A mechanism accounting for the transient production of PHA trimers was proposed, based on modeling of the enzyme’s tertiary structure and amino acid sequence homology to related PHA depolymerases.","PeriodicalId":15262,"journal":{"name":"Journal of Bioremediation and Biodegradation","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89577434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biotransfromation of Dibenzothiophene by Resting Cells of a Newly Isolated Serratia marscens Sp. Strain Originated from Industrial Wastewater","authors":"L. El-Bassi, R. Ouertani, N. Shinzato, A. Ghrabi","doi":"10.4172/2155-6199.1000439","DOIUrl":"https://doi.org/10.4172/2155-6199.1000439","url":null,"abstract":"Five isolates able to use dibenzothiophene (DBT) as a sole sulfur source with high rates were selected to investigate their potentialities as biocatalysts of biodesulfurization reactions. The desulfurizing activities of selected strains were investigated in growing and resting cell state. The biodegradation yields were considerably higher in resting cell reaction especially for two strains tentatively named S1 (98.8%) and S27 (97.5%). These results insinuated that biodegradation activity was mainly related to secondary metabolism on these strains. Their biotransformation potentialities were also evaluated under various conditions in order to evaluate their stability in both aqueous and organic media; and their sensitivity to the presence of squalene, used in this study as a representative of hydrocarbons in petroleum. The results showed that the 5 selected strains were still active in the presence of 95% of squalene but no transformation observed at 99% of squalene. The sulfur substrate selectivity was studied in presence of other organosulfur compounds such us dimethylsulfoxide DMSO and benzothiazole BTH. The presence of these substrates inhibited the DBT uptake by the bacteria and consequently decreased its degradation rate. Moreover, conventional analysis of 16S ribosomal DNA sequencing showed that the strain-with highest bioconversion rates-belonged to Serratia marcescens species. To far of our knowledge, Serratia sp. was rarely reported as DBT degrder strain. Thus, the rate and the extent of the biodesulfurization reaction, exhibited by the strain Serratia marcescens S27, suggested that it could be used in practical scale.","PeriodicalId":15262,"journal":{"name":"Journal of Bioremediation and Biodegradation","volume":"70 1","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85829859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Determination of Microbial Activities and Biomass in Biofilm Associated with Treatment Wetlands Compartments to Investigate Active Pollutant Processing Site","authors":"Adane Sirage Ali","doi":"10.4172/2155-6199.1000419","DOIUrl":"https://doi.org/10.4172/2155-6199.1000419","url":null,"abstract":"Although Floating treatment wetlands (FTWs) provide immense advantages over other natural treatment facilities, there is no information about biofilm functioning and microbial-based processes in FTW. Therefore, this study was aimed to evaluate the magnitude of microbial-based processes in the root, bottom and water column zones of the FTW by employing of macrophytes. For this experiment, primary domestic wastewater effluent was used in two pairs of FTWs (I. psuedacorus and P. stratiotes) and a pair of control. Total microbial activity was estimated using FDA hydrolytic activity and specific microbial activities were examined as denitrification and nitrification activities, whilst viable microbial number and distribution in the FTW compartments were determined using ATP assay. The average nitrification rates in the FTWs were 0.55, 0.81 and 2.75 μg/ml of water, gravel and root surface per hour respectively; and denitrification rates were 0.022, 0.053 and 0.132 μg/ml of water, gravel and roots surface respectively. The mean fluorescein concentration for the FTWs were 9.2, 1.1 and 0.06 μg/ml of root, gravel and freewater respectively, indicating that the highest total microbial activity in the FTW occurs in the biofilm associated with the root system. Mean viable microbial community 3.85 × 108, 3.7 × 107 and 1.3 × 107 cells/ml of root surface, water and gravel surface. Therefore, all the result suggested that active pollutant removal in all FTW stakes place in the root zone.","PeriodicalId":15262,"journal":{"name":"Journal of Bioremediation and Biodegradation","volume":"34 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2017-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73540914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Barone, R. A. Nastro, E. Gambino, M. Toscanesi, Gennaro Picciall, L. D. Napoli, M. Trifuoggi, V. Piccialli, M. Guida
{"title":"Pseudomonas anguilliseptica Strain-A1 Degradation of Polycyclic Aromatic Hydrocarbons in Soil Microcosms: Focus on Detoxification Activity and Free Water-Soluble Protein Extracts Kinetics and Efficiency","authors":"R. Barone, R. A. Nastro, E. Gambino, M. Toscanesi, Gennaro Picciall, L. D. Napoli, M. Trifuoggi, V. Piccialli, M. Guida","doi":"10.4172/2155-6199.1000418","DOIUrl":"https://doi.org/10.4172/2155-6199.1000418","url":null,"abstract":"Pseudomans anguilliseptica-A1 strain, isolated in an urban area, improved the efficiency of a microbial consortium, composed of Bacillaceae, Staphylococcacea, Xantomonadaceae and Enterbacteriaceae, whose ability to degrade five Polycyclic Aromatic Hydrocarbons (PAHs) among the priority pollutants was previously ascertained. Six soil microcosms were prepared with a slurry (60% soil, 40% water) artificially contaminated with anthracene (0.4 mg g-1), phenanthrene (0.2 mg g-1), naphthalene (0.2 mg g-1), pyrene (mg g-1) and benzo(a)pyrene (0.1 mg g-1) and opportunely aerated for two months. PAHs were monthly quantified by inverse phase High Performance Liquid Chromatography (HPLC), coupled with UV-Vis spectrophotometry and spectrofluorimetry. Acute toxicity assays vs Dapnia magna and Lepidium sativum, and chronic essays vs Ceriodaphniadubia were monthly performed. Our results showed a 100% degradation for naphthalene, 99.14% for anthracene, 99.23% for phenanthrene, 86% for pyrene and 72.5% for benzo[a]pyrene after two months of treatment. A sterile P. anguilliseptica-A1 lysate in Na-K buffer added with each of the chosen PAHs (53%, wtPAHs/volsusp), operated at 30°C the oxidative degradation of naphthalene, pyrene, benzo(a)pyrene and anthracene in a few hours, while the phenanthrene enzyme degradation process took about 15 h. The GC-MS analysis revealed interesting metabolite structures such as 2-hydroxynaphthalene, 9,10-phenanthrenedione, 2,2’ diphenic acid and methyl 4-hydroxybenzoate. The direct utilization of enzymes/microbial extracts from P. anguilliseptica-A1 could present specific advantages such as availability and a fast PAHs degradation time in bioremediation processes.","PeriodicalId":15262,"journal":{"name":"Journal of Bioremediation and Biodegradation","volume":"179 1","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2017-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80041626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Populus Tree Wood: A Noble Bioresource from Western Himalayas for the Development of Various Carbon Types for the Effective Application in Environment Protection i.e., Phenol Adsorption from Wastewater","authors":"Kumar Rd, Kannan Gk, K. Kadirvelu","doi":"10.4172/2155-6199.1000415","DOIUrl":"https://doi.org/10.4172/2155-6199.1000415","url":null,"abstract":"Populus tree is one of the extensively available Bioresource in the foothills of Western Himalayas. Apart from its multifarious utilities, the activated carbon from the poplar wood has also been finding its enormous use in combating environmental contaminants. Waste aqueous effluents containing various hazardous chemicals, heavy metals and dyes etc. cause serious environmental problems which ultimately affect both flora and fauna adversely. Activated carbon (AC) is being widely used adsorbent for the removal of organic pollutants. The poplar wood carbon (PWC) when chemically activated with NaOH, HCl, HNO3, H3PO4, H2SO4, CH3COOH and ZnCl2 caused significant increase in surface area and pore size development. All the chemically activated carbons (CACs) were subjected to extensive physiochemical studies like SEM, XRD, FTIR, EDAX and surface area etc. Among all the carbons, the SEM and surface area analysis of H2SO4 activated carbon showed the maximum pore size of 7.1 μm and leading surface area of 1045 m2/g. These carbons are acidic with their pHzpc in the range of 3.6 to 4.1. The carbon is amorphous in nature as it is showing three typical broad peaks around 26.5, 44.4 and 80° in all the samples. Among the bulk density of these carbons, ZnCl2 and H2SO4 activated carbons have maximum of 428 and 427 kg/m3 respectively. The utilization of these carbons in environmental protection has been studied by carrying out adsorption studies for the removal of phenol. Direct proportion of phenol adsorption to the adsorbent concentration was well established. Effect of contact time on adsorption of phenol using 0.5 gm of adsorbent with 25 ml of 1000 ppm adsorbate showed 100% removal of phenol and the equilibrium was attained in almost an hour. Preliminary studies using poplar wood carbon for the elimination of highly hazardous contaminants has been carried out and the results have been very encouraging.","PeriodicalId":15262,"journal":{"name":"Journal of Bioremediation and Biodegradation","volume":"53 1","pages":"1-11"},"PeriodicalIF":0.0,"publicationDate":"2017-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78649223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. David, Bamidele Femi, Alabi Gbenga, Adeleke Bartholomew Saanu
{"title":"Purification and Characterization of α-Amylase from Bacillus subtilis Isolated from Cassava Processing Sites","authors":"S. David, Bamidele Femi, Alabi Gbenga, Adeleke Bartholomew Saanu","doi":"10.4172/2155-6199.1000417","DOIUrl":"https://doi.org/10.4172/2155-6199.1000417","url":null,"abstract":"This study was designed to purify and characterize of α-amylase from pure strain of Bacillus subtilis. The crude α- amylase was purified by ammonium sulphate precipitation, then loaded on DEAE Sephadex A-50 ion exchange chromatography and gel filtration. The effect of pH, temperature and metal ions were investigated on the purified enzyme. The single protein band on SDS-PAGE suggested that the enzyme was homogenous. Two different activity peaks were observed in ion exchange chromatography designated pool A and pool B with the 8% and 4% yield, 15.93 and 6.44 purification fold and specific activity 2.55 μmol/min/mg and 1.03 μmol/min/mg respectively. The two fractions revealed the same optimum pH 7.0 for the α-amylase activity while the enzyme was relatively stable at pH 4.0 and 7.0 between 20 to 40 minutes and 60 to 80 minutes for pool A and pH 8.0 between 40 and 100 minutes for pool B. At 40°C, optimum temperature was reached, and amylase activity was maintained at 75% and 70% temperature stability between 60 to 80 minutes for pool A and B, less than 20%, the residual activity at 60°C and 70°C was recorded. The incubation of α-amylase with Na+ and Zn2+ ions enhanced/activate the enzyme activity correspondingly, Al3+ and K+ ions exhibited varied degree of inhibition while Ca2+ and Hg2+ ions caused total inhibition on α-amylase activity. The ability of purified α-amylase from Bacillus subtilis under wide range of temperatures and pH suggests its applications in industries and bioremediation of effluent discharge on food processing sites.","PeriodicalId":15262,"journal":{"name":"Journal of Bioremediation and Biodegradation","volume":"67 1","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2017-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80257186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of Novel Biosurfactants Produced by the Strain Fusarium oxysporum","authors":"R. Santhappan, M. Pandian","doi":"10.4172/2155-6199.1000416","DOIUrl":"https://doi.org/10.4172/2155-6199.1000416","url":null,"abstract":"A biosurfactant-producing strain, Fusarium oxysporum, was isolated from crude oil polluted soil sample collected from automobile service station of Hosur, India. The biosurfactant was extracted from the culture sample and the purified extract weighed 1.02gm. The extract when analyzed with TLC produced brown spots with iodine vapors indicating that the surfactant is of lipid composition. The FTIR spectra recorded for the compounds produced by fungal species Fusarium indicated the presence of functional groups –COO- and CH2 groups. The NMR spectral studies of the compounds produced by Fusarium were identified to be two major esters namely ester of 25-methyl-heptacosanoic acid and ethyl ester of 9-methyl-hexadecanoic acid. Based on the molecular masses and fragmentation patterns of GC-MS conducted, the structures of the compounds were confirmed to be methyl esters of 25-methyl-heptacosanoic acids and 9-methyl-hexadecanoic acids. The compounds identified in the present study, being fatty acids are good emulsifiers and promisingly good biosurfactants.","PeriodicalId":15262,"journal":{"name":"Journal of Bioremediation and Biodegradation","volume":"5 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2017-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88206440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Suleman, S. Noman, Y. Atif, N. Faizan, M. Arooj
{"title":"Thermodynamic and Kinetic Investigations for Biosorption of Chromium(VI) With Green Algae ( Pithophora oedogonia )","authors":"S. Suleman, S. Noman, Y. Atif, N. Faizan, M. Arooj","doi":"10.4172/2155-6199.1000414","DOIUrl":"https://doi.org/10.4172/2155-6199.1000414","url":null,"abstract":"Heavy metals are the conservative pollutants which cannot be degraded by bacterial attack and are permanent addition to marine environment. Their conservation usually exceeds the allowable levels usually found in water ways and soil. They locate their way up the food chain and due to their accumulation, can disrupt biological process. Recently, biosorption has come up as effective tool in which biomass of various organisms have been tested. In the present study, the biosorptive potential of algae biomass of green algae (Pithophora oedogonia) has been investigated for removal of toxic heavy metal, such as chromium (VI) ions. Various physico-chemical factors have been optimized for biosorptive capacities of sorbates by sorbents. Optimum pH was found to be 4 and optimum temperature was 30°C for Cr (VI). Various adsorption models were elucidated to data, such as Langmuir, Freundlich and Temkin isotherms whereas Freundlich model was found to be fittest showing multilayer sorption. Pseudo-second order kinetic model was also found to fit for this study with regression coefficient value of 0.97. Additionally, Fourier Transform Infra-red Spectroscopic studies (FTIR) indicated various electronegative functional groups on the surface of green algae (Pithophora oedogonia) which could possibly offer the binding sites for cations under investigation.","PeriodicalId":15262,"journal":{"name":"Journal of Bioremediation and Biodegradation","volume":"75 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2017-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80502789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Heavy Metals in Soil and Application of New Plant Materials in the Process of Phytoremediation","authors":"Ljiljana Babincev","doi":"10.4172/2155-6199.1000413","DOIUrl":"https://doi.org/10.4172/2155-6199.1000413","url":null,"abstract":"The aim of this paper is to determine the concentration of Pb, Cd, and Zn in: I) alluvial soil; and II) plants: a) vegetable: lettuce (Lactuca sativa) and common onion (Allium cepa); b) legumes: bird's- foot trefoil (Lotus corniculatus L.) and red clover (Trifolium pretense L.); and c) grasses (weed plants): zubach (Cynodon dactylon) and tall fescue (Festuca arundinaceous Schreb.); as well as III) determination of new plant species suitable for bioaccumulation and phytoremediation processes. \u0000The experimental work was carried out through vegetation experiments, and the concentration of metal was determined by potentiometric stripping analysis (PSA). The obtained results show that: I) the concentration of metals in the analyzed soil is above the allowed values at all measuring points; II) a) concentration of Cd in leaf and Pb at the root of the lettuce is increased; b) the concentration of the metal in the bird's-foot trefoil and the red clover is lower than the critical value for the plants; c) in grasses (weed plants), tall fescue and couch grass, the concentration of metal is higher than critical in all measuring points, and in some places it has a value that is toxic for plants; and e) weed plants: tall fescue and couch grass contain high concentrations of heavy metals indicating a certain degree of tolerance and the possibility of using these plants in the bioaccumulation and phytoremediation process.","PeriodicalId":15262,"journal":{"name":"Journal of Bioremediation and Biodegradation","volume":"30 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2017-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87611463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}