Claudie Bian, Anna Marchetti, Marco Dias, Jackie Perrin, Pierre Cosson
{"title":"Short transmembrane domains target type II proteins to the Golgi apparatus and type I proteins to the endoplasmic reticulum.","authors":"Claudie Bian, Anna Marchetti, Marco Dias, Jackie Perrin, Pierre Cosson","doi":"10.1242/jcs.261738","DOIUrl":"10.1242/jcs.261738","url":null,"abstract":"<p><p>Transmembrane domains (TMDs) contain information targeting membrane proteins to various compartments of the secretory pathway. In previous studies, short or hydrophilic TMDs have been shown to target membrane proteins either to the endoplasmic reticulum (ER) or to the Golgi apparatus. However, the basis for differential sorting to the ER and to the Golgi apparatus remained unclear. To clarify this point, we quantitatively analyzed the intracellular targeting of a collection of proteins exhibiting a single TMD. Our results reveal that membrane topology is a major targeting element in the early secretory pathway: type I proteins with a short TMD are targeted to the ER, and type II proteins to the Golgi apparatus. A combination of three features accounts for the sorting of simple membrane proteins in the secretory pathway: membrane topology, length and hydrophilicity of the TMD, and size of the cytosolic domain. By clarifying the rules governing sorting to the ER and to the Golgi apparatus, our study could revive the search for sorting mechanisms in the early secretory pathway.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evidence of 14-3-3 proteins contributing to kinetochore integrity and chromosome congression during mitosis.","authors":"Guhan Kaliyaperumal Anbalagan, Prakhar Agarwal, Santanu Kumar Ghosh","doi":"10.1242/jcs.261928","DOIUrl":"10.1242/jcs.261928","url":null,"abstract":"<p><p>The 14-3-3 family of proteins are conserved across eukaryotes and serve myriad important regulatory functions in the cell. Homo- and hetero-dimers of these proteins mainly recognize their ligands via conserved motifs to modulate the localization and functions of those effector ligands. In most of the genetic backgrounds of Saccharomyces cerevisiae, disruption of both 14-3-3 homologs (Bmh1 and Bmh2) are either lethal or cells survive with severe growth defects, including gross chromosomal missegregation and prolonged cell cycle arrest. To elucidate their contributions to chromosome segregation, in this work, we investigated their centromere- and kinetochore-related functions of Bmh1 and Bmh2. Analysis of appropriate deletion mutants shows that Bmh isoforms have cumulative and non-shared isoform-specific contributions in maintaining the proper integrity of the kinetochore ensemble. Consequently, Bmh mutant cells exhibited perturbations in kinetochore-microtubule (KT-MT) dynamics, characterized by kinetochore declustering, mis-localization of kinetochore proteins and Mad2-mediated transient G2/M arrest. These defects also caused an asynchronous chromosome congression in bmh mutants during metaphase. In summary, this report advances the knowledge on contributions of budding yeast 14-3-3 proteins in chromosome segregation by demonstrating their roles in kinetochore integrity and chromosome congression.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141579799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"β-H-Spectrin is a key component of an apical-medial hub of proteins during cell wedging in tube morphogenesis.","authors":"Ghislain Gillard, Katja Röper","doi":"10.1242/jcs.261946","DOIUrl":"10.1242/jcs.261946","url":null,"abstract":"<p><p>Coordinated cell shape changes are a major driver of tissue morphogenesis, with apical constriction of epithelial cells leading to tissue bending. We previously identified that interplay between the apical-medial actomyosin, which drives apical constriction, and the underlying longitudinal microtubule array has a key role during tube budding of salivary glands in the Drosophila embryo. At this microtubule-actomyosin interface, a hub of proteins accumulates, and we have shown before that this hub includes the microtubule-actin crosslinker Shot and the microtubule minus-end-binding protein Patronin. Here, we identify two actin-crosslinkers, β-heavy (H)-Spectrin (also known as Karst) and Filamin (also known as Cheerio), and the multi-PDZ-domain protein Big bang as components of the protein hub. We show that tissue-specific degradation of β-H-Spectrin leads to reduction of apical-medial F-actin, Shot, Patronin and Big bang, as well as concomitant defects in apical constriction, but that residual Patronin is still sufficient to assist microtubule reorganisation. We find that, unlike Patronin and Shot, neither β-H-Spectrin nor Big bang require microtubules for their localisation. β-H-Spectrin is instead recruited via binding to apical-medial phosphoinositides, and overexpression of the C-terminal pleckstrin homology domain-containing region of β-H-Spectrin (β-H-33) displaces endogenous β-H-Spectrin and leads to strong morphogenetic defects. This protein hub therefore requires the synergy and coincidence of membrane- and microtubule-associated components for its assembly and function in sustaining apical constriction during tubulogenesis.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361641/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141579800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kristen M Consalvo, Ramesh Rijal, Steven L Beruvides, Ryan Mitchell, Karissa Beauchemin, Danni Collins, Jack Scoggin, Jerome Scott, Richard H Gomer
{"title":"PTEN and the PTEN-like phosphatase CnrN have both distinct and overlapping roles in a Dictyostelium chemorepulsion pathway.","authors":"Kristen M Consalvo, Ramesh Rijal, Steven L Beruvides, Ryan Mitchell, Karissa Beauchemin, Danni Collins, Jack Scoggin, Jerome Scott, Richard H Gomer","doi":"10.1242/jcs.262054","DOIUrl":"10.1242/jcs.262054","url":null,"abstract":"<p><p>Little is known about eukaryotic chemorepulsion. The enzymes phosphatase and tensin homolog (PTEN) and CnrN dephosphorylate phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] to phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Dictyostelium discoideum cells require both PTEN and CnrN to induce chemorepulsion of cells away from the secreted chemorepellent protein AprA. How D. discoideum cells utilize two proteins with redundant phosphatase activities in response to AprA is unclear. Here, we show that D. discoideum cells require both PTEN and CnrN to locally inhibit Ras activation, decrease basal levels of PI(3,4,5)P3 and increase basal numbers of macropinosomes, and AprA prevents this increase. AprA requires both PTEN and CnrN to increase PI(4,5)P2 levels, decrease PI(3,4,5)P3 levels, inhibit proliferation, decrease myosin II phosphorylation and increase filopod sizes. PTEN, but not CnrN, decreases basal levels of PI(4,5)P2, and AprA requires PTEN, but not CnrN, to induce cell roundness. Together, our results suggest that CnrN and PTEN play unique roles in AprA-induced chemorepulsion.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11317092/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141468306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Loss of Tob1 promotes muscle regeneration through muscle stem cell expansion.","authors":"Yasuo Kitajima, Kiyoshi Yoshioka, Yoko Mikumo, Shun Ohki, Kazumitsu Maehara, Yasuyuki Ohkawa, Yusuke Ono","doi":"10.1242/jcs.261886","DOIUrl":"10.1242/jcs.261886","url":null,"abstract":"<p><p>Muscle stem cells (MuSCs) play an indispensable role in postnatal muscle growth and hypertrophy in adults. MuSCs also retain a highly regenerative capacity and are therefore considered a promising stem cell source for regenerative therapy for muscle diseases. In this study, we identify tumor-suppressor protein Tob1 as a Pax7 target protein that negatively controls the population expansion of MuSCs. Tob1 protein is undetectable in the quiescent state but is upregulated during activation in MuSCs. Tob1 ablation in mice accelerates MuSC population expansion and boosts muscle regeneration. Moreover, inactivation of Tob1 in MuSCs ameliorates the efficiency of MuSC transplantation in a murine muscular dystrophy model. Collectively, selective targeting of Tob1 might be a therapeutic option for the treatment of muscular diseases, including muscular dystrophy and age-related sarcopenia.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141734162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inga Mohr, Amin Mirzaiebadizi, Sibaji K Sanyal, Pichaporn Chuenban, Mohammad R Ahmadian, Rumen Ivanov, Petra Bauer
{"title":"Characterization of the small Arabidopsis thaliana GTPase and ADP-ribosylation factor-like 2 protein TITAN 5.","authors":"Inga Mohr, Amin Mirzaiebadizi, Sibaji K Sanyal, Pichaporn Chuenban, Mohammad R Ahmadian, Rumen Ivanov, Petra Bauer","doi":"10.1242/jcs.262315","DOIUrl":"10.1242/jcs.262315","url":null,"abstract":"<p><p>Small GTPases switch between GDP- and GTP-bound states during cell signaling. The ADP-ribosylation factor (ARF) family of small GTPases is involved in vesicle trafficking. Although evolutionarily well conserved, little is known about ARF and ARF-like GTPases in plants. We characterized biochemical properties and cellular localization of the essential small ARF-like GTPase TITAN 5 (TTN5; also known as HALLIMASCH, ARL2 and ARLC1) from Arabidopsis thaliana, and two TTN5 proteins with point mutants in conserved residues, TTN5T30N and TTN5Q70L, that were expected to be unable to perform nucleotide exchange and GTP hydrolysis, respectively. TTN5 exhibited very rapid intrinsic nucleotide exchange and remarkably low GTP hydrolysis activity, functioning as a non-classical small GTPase being likely present in a GTP-loaded active form. We analyzed signals from YFP-TTN5 and HA3-TTN5 by in situ immunolocalization in Arabidopsis seedlings and through use of a transient expression system. Colocalization with endomembrane markers and pharmacological treatments suggests that TTN5 can be present at the plasma membrane and that it dynamically associates with membranes of vesicles, Golgi stacks and multivesicular bodies. Although TTN5Q70L mirrored wild-type TTN5 behavior, the TTN5T30N mutant differed in some aspects. Hence, the unusual rapid nucleotide exchange activity of TTN5 is linked with its membrane dynamics, and TTN5 likely has a role in vesicle transport within the endomembrane system.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361645/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stephanie J Bouley, Andrew V Grassetti, Robert J Allaway, Matthew D Wood, Helen W Hou, India R Burdon Dasbach, William Seibel, Jimmy Wu, Scott A Gerber, Konstantin H Dragnev, James A Walker, Yolanda Sanchez
{"title":"Chemical genetic screens reveal defective lysosomal trafficking as synthetic lethal with NF1 loss.","authors":"Stephanie J Bouley, Andrew V Grassetti, Robert J Allaway, Matthew D Wood, Helen W Hou, India R Burdon Dasbach, William Seibel, Jimmy Wu, Scott A Gerber, Konstantin H Dragnev, James A Walker, Yolanda Sanchez","doi":"10.1242/jcs.262343","DOIUrl":"10.1242/jcs.262343","url":null,"abstract":"<p><p>Neurofibromatosis type 1, a genetic disorder caused by pathogenic germline variations in NF1, predisposes individuals to the development of tumors, including cutaneous and plexiform neurofibromas (CNs and PNs), optic gliomas, astrocytomas, juvenile myelomonocytic leukemia, high-grade gliomas and malignant peripheral nerve sheath tumors (MPNSTs), which are chemotherapy- and radiation-resistant sarcomas with poor survival. Loss of NF1 also occurs in sporadic tumors, such as glioblastoma (GBM), melanoma, breast, ovarian and lung cancers. We performed a high-throughput screen for compounds that were synthetic lethal with NF1 loss, which identified several leads, including the small molecule Y102. Treatment of cells with Y102 perturbed autophagy, mitophagy and lysosome positioning in NF1-deficient cells. A dual proteomics approach identified BLOC-one-related complex (BORC), which is required for lysosome positioning and trafficking, as a potential target of Y102. Knockdown of a BORC subunit using siRNA recapitulated the phenotypes observed with Y102 treatment. Our findings demonstrate that BORC might be a promising therapeutic target for NF1-deficient tumors.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361638/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141626849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katrina B Velle, Andrew J M Swafford, Ethan Garner, Lillian K Fritz-Laylin
{"title":"Actin network evolution as a key driver of eukaryotic diversification.","authors":"Katrina B Velle, Andrew J M Swafford, Ethan Garner, Lillian K Fritz-Laylin","doi":"10.1242/jcs.261660","DOIUrl":"10.1242/jcs.261660","url":null,"abstract":"<p><p>Eukaryotic cells have been evolving for billions of years, giving rise to wildly diverse cell forms and functions. Despite their variability, all eukaryotic cells share key hallmarks, including membrane-bound organelles, heavily regulated cytoskeletal networks and complex signaling cascades. Because the actin cytoskeleton interfaces with each of these features, understanding how it evolved and diversified across eukaryotic phyla is essential to understanding the evolution and diversification of eukaryotic cells themselves. Here, we discuss what we know about the origin and diversity of actin networks in terms of their compositions, structures and regulation, and how actin evolution contributes to the diversity of eukaryotic form and function.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141906714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
José Wojnacki, Gonzalo Quassollo, Martín D Bordenave, Nicolás Unsain, Gaby F Martínez, Alan M Szalai, Olivier Pertz, Gregg G Gundersen, Francesca Bartolini, Fernando D Stefani, Alfredo Cáceres, Mariano Bisbal
{"title":"Dual spatio-temporal regulation of axon growth and microtubule dynamics by RhoA signaling pathways.","authors":"José Wojnacki, Gonzalo Quassollo, Martín D Bordenave, Nicolás Unsain, Gaby F Martínez, Alan M Szalai, Olivier Pertz, Gregg G Gundersen, Francesca Bartolini, Fernando D Stefani, Alfredo Cáceres, Mariano Bisbal","doi":"10.1242/jcs.261970","DOIUrl":"10.1242/jcs.261970","url":null,"abstract":"<p><p>RhoA plays a crucial role in neuronal polarization, where its action restraining axon outgrowth has been thoroughly studied. We now report that RhoA has not only an inhibitory but also a stimulatory effect on axon development depending on when and where exerts its action and the downstream effectors involved. In cultured hippocampal neurons, FRET imaging revealed that RhoA activity selectively localized in growth cones of undifferentiated neurites, whereas in developing axons it displayed a biphasic pattern, being low in nascent axons and high in elongating ones. RhoA-Rho kinase (ROCK) signaling prevented axon initiation but had no effect on elongation, whereas formin inhibition reduced axon extension without significantly altering initial outgrowth. In addition, RhoA-mDia signaling promoted axon elongation by stimulating growth cone microtubule stability and assembly, as opposed to RhoA-ROCK signaling, which restrained growth cone microtubule assembly and protrusion.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141442762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simple prerequisite of presequence for mitochondrial protein import in the unicellular red alga Cyanidioschyzon merolae.","authors":"Riko Hirata, Yuko Mogi, Kohei Takahashi, Hisayoshi Nozaki, Tetsuya Higashiyama, Yamato Yoshida","doi":"10.1242/jcs.262042","DOIUrl":"10.1242/jcs.262042","url":null,"abstract":"<p><p>Mitochondrial biogenesis relies on hundreds of proteins that are derived from genes encoded in the nucleus. According to the characteristic properties of N-terminal targeting peptides (TPs) and multi-step authentication by the protein translocase called the TOM complex, nascent polypeptides satisfying the requirements are imported into mitochondria. However, it is unknown whether eukaryotic cells with a single mitochondrion per cell have a similar complexity of presequence requirements for mitochondrial protein import compared to other eukaryotes with multiple mitochondria. Based on putative mitochondrial TP sequences in the unicellular red alga Cyanidioschyzon merolae, we designed synthetic TPs and showed that functional TPs must have at least one basic residue and a specific amino acid composition, although their physicochemical properties are not strictly determined. Combined with the simple composition of the TOM complex in C. merolae, our results suggest that a regional positive charge in TPs is verified solely by TOM22 for mitochondrial protein import in C. merolae. The simple authentication mechanism indicates that the monomitochondrial C. merolae does not need to increase the cryptographic complexity of the lock-and-key mechanism for mitochondrial protein import.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298712/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141468307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}