{"title":"功能残基组学-分析错义突变如何影响细胞系统。","authors":"Guangshuo Ou","doi":"10.1242/jcs.263954","DOIUrl":null,"url":null,"abstract":"<p><p>Functional residuomics explores how individual amino acid residues influence protein function, interactions and cellular homeostasis, shifting the focus from gene-level mutations to residue-level alterations. Unlike gene-centric approaches, residuomics systematically examines missense mutations across the proteome, linking small changes in amino acid sequences to organelle dynamics and tissue phenotypes. By integrating mutagenesis with high-throughput phenotyping, this approach connects atomic-scale changes to larger biological systems, offering valuable insights for clinical diagnostics and therapeutic development. Advances in saturation genome editing (SGE) and multiplexed assays of variant effect (MAVEs) show the potential of residuomics in addressing human genetic variation and improving precision medicine. Despite challenges in scalability and data interpretation, innovations in genetic tools, diploid models and machine learning are unlocking the full potential of residuomics in modern cell biology.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":"138 13","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional residuomics - analyzing how missense mutations impact cellular systems.\",\"authors\":\"Guangshuo Ou\",\"doi\":\"10.1242/jcs.263954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Functional residuomics explores how individual amino acid residues influence protein function, interactions and cellular homeostasis, shifting the focus from gene-level mutations to residue-level alterations. Unlike gene-centric approaches, residuomics systematically examines missense mutations across the proteome, linking small changes in amino acid sequences to organelle dynamics and tissue phenotypes. By integrating mutagenesis with high-throughput phenotyping, this approach connects atomic-scale changes to larger biological systems, offering valuable insights for clinical diagnostics and therapeutic development. Advances in saturation genome editing (SGE) and multiplexed assays of variant effect (MAVEs) show the potential of residuomics in addressing human genetic variation and improving precision medicine. Despite challenges in scalability and data interpretation, innovations in genetic tools, diploid models and machine learning are unlocking the full potential of residuomics in modern cell biology.</p>\",\"PeriodicalId\":15227,\"journal\":{\"name\":\"Journal of cell science\",\"volume\":\"138 13\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cell science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/jcs.263954\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.263954","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Functional residuomics - analyzing how missense mutations impact cellular systems.
Functional residuomics explores how individual amino acid residues influence protein function, interactions and cellular homeostasis, shifting the focus from gene-level mutations to residue-level alterations. Unlike gene-centric approaches, residuomics systematically examines missense mutations across the proteome, linking small changes in amino acid sequences to organelle dynamics and tissue phenotypes. By integrating mutagenesis with high-throughput phenotyping, this approach connects atomic-scale changes to larger biological systems, offering valuable insights for clinical diagnostics and therapeutic development. Advances in saturation genome editing (SGE) and multiplexed assays of variant effect (MAVEs) show the potential of residuomics in addressing human genetic variation and improving precision medicine. Despite challenges in scalability and data interpretation, innovations in genetic tools, diploid models and machine learning are unlocking the full potential of residuomics in modern cell biology.