Monika A Jaiswal, Akshay Karn, Aparna Das, Anisha Kumari, Shilu Tiwari, Sorab N Dalal
{"title":"14-3-3通过抑制Plk1和分离酶活性抑制中心粒过早脱离。","authors":"Monika A Jaiswal, Akshay Karn, Aparna Das, Anisha Kumari, Shilu Tiwari, Sorab N Dalal","doi":"10.1242/jcs.263808","DOIUrl":null,"url":null,"abstract":"<p><p>The 14-3-3 protein family regulates several pathways in mammalian cells, including centrosome duplication. However, the precise mechanisms by which 14-3-3 paralogs regulate the centrosome cycle remain unclear. To identify the mechanisms by which 14-3-3ε regulates centrosome duplication, we altered two conserved acidic residues in the 14-3-3ε phospho-peptide-binding pocket that regulate complex formation and dissociation with the associated ligands, D127 and E134, to alanine. Altering these residues to alanine led to opposing effects on centrosome duplication; the D127A mutant inhibited centrosome duplication, whereas cells expressing the E134A mutant showed the presence of supernumerary centrosomes. We demonstrate that 14-3-3ε does not inhibit centriole duplication, as reported for 14-3-3γ, but inhibits centriole disengagement. Using a combination of pharmacological and genetic approaches, we demonstrate that 14-3-3ε inhibits the activity of Plk1 and separase [also known as separin (ESPL1)], leading to disengagement defects that ultimately lead to decreased proliferation and cell death. Our work demonstrates that different 14-3-3 paralogs regulate different steps in the centrosome cycle and that disrupting complex formation between 14-3-3ε and Plk1 or separase could be a novel therapeutic strategy in tumor cells.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"14-3-3ε inhibits premature centriole disengagement by inhibiting the activity of Plk1 and separase.\",\"authors\":\"Monika A Jaiswal, Akshay Karn, Aparna Das, Anisha Kumari, Shilu Tiwari, Sorab N Dalal\",\"doi\":\"10.1242/jcs.263808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The 14-3-3 protein family regulates several pathways in mammalian cells, including centrosome duplication. However, the precise mechanisms by which 14-3-3 paralogs regulate the centrosome cycle remain unclear. To identify the mechanisms by which 14-3-3ε regulates centrosome duplication, we altered two conserved acidic residues in the 14-3-3ε phospho-peptide-binding pocket that regulate complex formation and dissociation with the associated ligands, D127 and E134, to alanine. Altering these residues to alanine led to opposing effects on centrosome duplication; the D127A mutant inhibited centrosome duplication, whereas cells expressing the E134A mutant showed the presence of supernumerary centrosomes. We demonstrate that 14-3-3ε does not inhibit centriole duplication, as reported for 14-3-3γ, but inhibits centriole disengagement. Using a combination of pharmacological and genetic approaches, we demonstrate that 14-3-3ε inhibits the activity of Plk1 and separase [also known as separin (ESPL1)], leading to disengagement defects that ultimately lead to decreased proliferation and cell death. Our work demonstrates that different 14-3-3 paralogs regulate different steps in the centrosome cycle and that disrupting complex formation between 14-3-3ε and Plk1 or separase could be a novel therapeutic strategy in tumor cells.</p>\",\"PeriodicalId\":15227,\"journal\":{\"name\":\"Journal of cell science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cell science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/jcs.263808\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.263808","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
14-3-3ε inhibits premature centriole disengagement by inhibiting the activity of Plk1 and separase.
The 14-3-3 protein family regulates several pathways in mammalian cells, including centrosome duplication. However, the precise mechanisms by which 14-3-3 paralogs regulate the centrosome cycle remain unclear. To identify the mechanisms by which 14-3-3ε regulates centrosome duplication, we altered two conserved acidic residues in the 14-3-3ε phospho-peptide-binding pocket that regulate complex formation and dissociation with the associated ligands, D127 and E134, to alanine. Altering these residues to alanine led to opposing effects on centrosome duplication; the D127A mutant inhibited centrosome duplication, whereas cells expressing the E134A mutant showed the presence of supernumerary centrosomes. We demonstrate that 14-3-3ε does not inhibit centriole duplication, as reported for 14-3-3γ, but inhibits centriole disengagement. Using a combination of pharmacological and genetic approaches, we demonstrate that 14-3-3ε inhibits the activity of Plk1 and separase [also known as separin (ESPL1)], leading to disengagement defects that ultimately lead to decreased proliferation and cell death. Our work demonstrates that different 14-3-3 paralogs regulate different steps in the centrosome cycle and that disrupting complex formation between 14-3-3ε and Plk1 or separase could be a novel therapeutic strategy in tumor cells.