Eduardo Alvarado-Ortiz, Elizabeth Ortiz-Sánchez, Miguel Angel Sarabia-Sánchez, Karen Griselda de la Cruz-López, Alejandro García-Carrancá, Martha Robles-Flores
{"title":"Mutant p53 gain-of-function stimulates canonical Wnt signaling via PI3K/AKT pathway in colon cancer","authors":"Eduardo Alvarado-Ortiz, Elizabeth Ortiz-Sánchez, Miguel Angel Sarabia-Sánchez, Karen Griselda de la Cruz-López, Alejandro García-Carrancá, Martha Robles-Flores","doi":"10.1007/s12079-023-00793-4","DOIUrl":"10.1007/s12079-023-00793-4","url":null,"abstract":"<div>\u0000 \u0000 <p>Aberrant canonical Wnt signaling is a hallmark of colon cancer. The <i>TP53</i> tumor suppressor gene is altered in many solid tumors, including colorectal cancer, resulting in mutant versions of p53 (mut-p53) that lose their tumor suppressor capacities and acquire new-oncogenic functions (GOFs) critical for disease progression. Although the mechanisms related to mut-p53 GOF have been explored extensively, the relevance of mut-p53 in the canonical Wnt pathway is not well defined. This work investigated the influence of mut-p53 compared to wt-p53 in β-catenin-dependent Wnt signaling. Using the TCGA public data from Pan-Cancer and the GEPIA2 platform, an in silico analysis of wt-p53 versus mut-p53 genotyped colorectal cancer patients showed that <i>TP53</i> (p53) and <i>CTNNB1</i> (β-catenin) are significantly overexpressed in colorectal cancer, compared with normal tissue. Using p53 overexpression or p53 knockdown assays of wt-p53 or mut-p53, we found that while wt-p53 antagonizes canonical Wnt signaling, mut-p53 induces the opposite effect, improving the β-catenin-dependent transcriptional activity and colony formation ability of colon cancer cells, which were both decreased by mut-p53 knockdown expression. The mechanism involved in mut-p53-induced activation of canonical Wnt appears to be via AKT-mediated phosphorylation of Ser 552 of β-catenin, which is known to stabilize and enhance its transcriptional activity. We also found that while wt-p53 expression contributes to 5-FU sensitivity in colon cancer cells, the RITA p53 reactivating molecule counteracted the resistance against 5-FU in cells expressing mut-p53. Our results indicate that mut-p53 GOF acts as a positive regulator of canonical Wnt signaling and participates in the induction of resistance to 5-FU in colon cancer cells.</p>\u0000 </div>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"17 4","pages":"1389-1403"},"PeriodicalIF":3.6,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10713888/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138047032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raksha A. Ganesh, Krishnan Venkataraman, Ravi Sirdeshmukh
{"title":"GPR56 signaling pathway network and its dynamics in the mesenchymal transition of glioblastoma","authors":"Raksha A. Ganesh, Krishnan Venkataraman, Ravi Sirdeshmukh","doi":"10.1007/s12079-023-00792-5","DOIUrl":"10.1007/s12079-023-00792-5","url":null,"abstract":"<div>\u0000 \u0000 <p>G protein-coupled receptor 56 (GPR56/ADGRG1) is a multifunctional adhesion GPCR involved in diverse biological processes ranging from development to cancer. In our earlier study, we reported that GPR56 is expressed heterogeneously in glioblastoma (GBM) and is involved in the mesenchymal transition, making it a promising therapeutic target (Ganesh et al<i>.</i>, 2022). Despite its important role in cancer, its mechanism of action or signaling is not completely understood. Thus, based on transcriptomic, proteomic, and phosphoproteomic differential expression data of GPR56 knockdown U373-GBM cells included in our above study along with detailed literature mining of the molecular events plausibly associated with GPR56 activity, we have constructed a signaling pathway map of GPR56 as may be applicable in mesenchymal transition in GBM. The map incorporates more than 100 molecular entities including kinases, receptors, ion channels, and others associated with Wnt, integrin, calcium signaling, growth factors, and inflammation signaling pathways. We also considered intracellular and extracellular factors that may influence the activity of the pathway entities. Here we present a curated signaling map of GPR56 in the context of GBM and discuss the relevance and plausible cross-connectivity across different axes attributable to GPR56 function.</p>\u0000 </div>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"17 4","pages":"1527-1535"},"PeriodicalIF":3.6,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10713905/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138047031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Babak Jahangiri, Mohammad Khalaj-Kondori, Elahe Asadollahi, Ali Kian Saei, Majid Sadeghizadeh
{"title":"Dual impacts of mesenchymal stem cell-derived exosomes on cancer cells: unravelling complex interactions","authors":"Babak Jahangiri, Mohammad Khalaj-Kondori, Elahe Asadollahi, Ali Kian Saei, Majid Sadeghizadeh","doi":"10.1007/s12079-023-00794-3","DOIUrl":"10.1007/s12079-023-00794-3","url":null,"abstract":"<div>\u0000 \u0000 <p>Mesenchymal stem cells (MSCs) are multipotent, self-renewing stromal cells found in a variety of adult tissues. MSCs possess a remarkable ability to migrate towards tumor sites, known as homing. This homing process is mediated by various factors, including chemokines, growth factors, and extracellular matrix components present in the tumor microenvironment. MSCs release extracellular vesicles known as exosomes (MSC-Exos), which have been suggested to serve a key role in mediating a wide variety of MSC activities. Through cell–cell communication, MSC-Exos have been shown to alter recipient cell phenotype or function and play as a novel cell-free alternative for MSC-based cell therapy. However, MSC recruitment to tumors allows for their interaction with cancer cells and subsequent regulation of tumor behavior. MSC-Exos act as tumor niche modulators via transferring exosomal contents, such as specific proteins or genetic materials, to the nearby cancer cells, leading to either promotion or suppression of tumorigenesis, angiogenesis, and metastasis, depending on the specific microenvironmental cues and recipient cell characteristics. Consequently, there is still a debate about the precise relationship between tumor cells and MSC-Exos, and it is unclear how MSC-Exos impacts tumor cells. Although the dysregulation of miRNAs is caused by the progression of cancer, they also play a direct role in either promoting or inhibiting tumor growth as they act as either oncogenes or tumor suppressors. The utilization of MSC-Exos may prove to be an effective method for restoring miRNA as a means of treating cancer. This review aimed to present the existing understanding of the impact that MSC-Exos could have on cancer. To begin with, we presented a brief explanation of exosomes, MSCs, and MSC-Exos. Following this, we delved into the impact of MSC-Exos on cancer growth, EMT, metastasis, angiogenesis, resistance to chemotherapy and radiotherapy, and modulation of the immune system.</p>\u0000 </div>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"17 4","pages":"1229-1247"},"PeriodicalIF":3.6,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10713965/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136397572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unpacking the complexity of nuclear IL-33 (nIL-33): a crucial regulator of transcription and signal transduction","authors":"Zengbin Wang, Nanhong Tang","doi":"10.1007/s12079-023-00788-1","DOIUrl":"10.1007/s12079-023-00788-1","url":null,"abstract":"<div>\u0000 \u0000 <p>Interleukin-33 (IL-33) (NF-HEV), a chromatin-associated nuclear cytokine, is a member of the IL-1 family. IL-33 possesses a nuclear localization signal and a homeodomain (a structure resembling a helix-turn-helix) that can bind to nuclear chromatin. Research has revealed that IL-33 can function as a nuclear factor to regulate various biological processes. This review discusses the cellular localization, functional effects, and immune regulation of full length IL-33 (FLIL-33), cytokine IL-33 (sIL-33) and nuclear IL-33 (nIL-33). In addition, the post-translational modifications of nIL-33 and the hypothesis of using nIL-33 as a treatment method were also summarized. A multidisciplinary approach is required which integrates methods and techniques from genomics, proteomics, cell biology and immunology to provide comprehensive insights into the function and therapeutic potential of nIL-33.</p>\u0000 </div>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"17 4","pages":"1131-1143"},"PeriodicalIF":3.6,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10713911/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50158041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Potential roles of lncRNA MALAT1-miRNA interactions in ocular diseases","authors":"Ava Nasrolahi, Fatemeh Khojasteh Pour, Abdolah Mousavi Salehi, Bartosz Kempisty, Maryam Hajizadeh, Mostafa Feghhi, Shirin Azizidoost, Maryam Farzaneh","doi":"10.1007/s12079-023-00787-2","DOIUrl":"10.1007/s12079-023-00787-2","url":null,"abstract":"<div>\u0000 \u0000 <p>Long non-coding RNAs (lncRNAs) are non-protein coding transcripts that are longer than 200 nucleotides in length. LncRNAs are implicated in gene expression at the transcriptional, translational, and epigenetic levels, and thereby impact different cellular processes including cell proliferation, migration, apoptosis, angiogenesis, and immune response. In recent years, numerous studies have demonstrated the significant contribution of lncRNAs to the pathogenesis and progression of various diseases, such as stroke, heart disease, and cancer. Further investigations have shown that lncRNAs have altered expression patterns in ocular tissues and cell lines during pathological conditions. The pathogenesis of various ocular diseases, including glaucoma, cataract, corneal diseases, proliferative vitreoretinopathy, diabetic retinopathy, and retinoblastoma, is influenced by the involvement of specific lncRNAs which play a critical role in the development and progression of these diseases. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a well-researched lncRNA in the context of ocular diseases, which has been shown to exert its biological effects through several signaling pathways and downstream targets. The present review provides a comprehensive summary of the molecular mechanisms underlying the biological functions and roles of MALAT1 in ocular diseases.</p>\u0000 </div>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"17 4","pages":"1203-1217"},"PeriodicalIF":3.6,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10713964/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49690683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exosomal miR-129 and miR-342 derived from intermittent hypoxia-stimulated vascular smooth muscle cells inhibit the eIF2α/ATF4 axis from preventing calcified aortic valvular disease","authors":"Chen Huang, Xu Han, Linjie Yang, Wei Song, Hualu Zhang, Xiaohua Zhu, Gongcheng Huang, Jing Xu","doi":"10.1007/s12079-023-00785-4","DOIUrl":"10.1007/s12079-023-00785-4","url":null,"abstract":"<div>\u0000 \u0000 <p>This study aims to elucidate the role of miR-129/miR-342 loaded in exosomes derived from vascular smooth muscle cells (VSMCs) stimulated by intermittent hypoxia in calcified aortic valvular disease (CAVD). Bioinformatics analysis was conducted to identify differentially expressed miRs in VSMCs-derived exosomes and CAVD samples, and their potential target genes were predicted. VSMCs were exposed to intermittent hypoxia to induce stimulation, followed by isolation of exosomes. Valvular interstitial cells (VICs) were cultured in vitro to investigate the impact of miR-129/miR-342 on VICs' osteogenic differentiation and aortic valve calcification with eIF2α. A CAVD mouse model was established using ApoE knockout mice for in vivo validation. In CAVD samples, miR-129 and miR-342 were downregulated, while eIF2α and ATF4 were upregulated. miR-129 and miR-342 exhibited inhibitory effects on eIF2α through targeted regulation. Exosomes released from intermittently hypoxia-stimulated VSMCs contained miR-129 and miR-342. Overexpression of miR-129 and miR-342, or silencing ATF4, suppressed VICs' osteogenic differentiation and aortic valve calcification, which could be rescued by overexpressed eIF2α. Collectively, intermittent hypoxia stimulation of VSMCs leads to the secretion of exosomes that activate the miR-129/miR-342 dual pathway, thereby inhibiting the eIF2α/ATF4 axis and attenuating VICs' osteogenic differentiation and CAVD progression.</p>\u0000 </div>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"17 4","pages":"1449-1467"},"PeriodicalIF":3.6,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10713511/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41122233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sylwia Bartoszewska, Jakub Sławski, James F. Collawn, Rafał Bartoszewski
{"title":"Dual RNase activity of IRE1 as a target for anticancer therapies","authors":"Sylwia Bartoszewska, Jakub Sławski, James F. Collawn, Rafał Bartoszewski","doi":"10.1007/s12079-023-00784-5","DOIUrl":"10.1007/s12079-023-00784-5","url":null,"abstract":"<div>\u0000 \u0000 <p>The unfolded protein response (UPR) is a cellular mechanism that protects cells during stress conditions in which there is an accumulation of misfolded proteins in the endoplasmic reticulum (ER). UPR activates three signaling pathways that function to alleviate stress conditions and promote cellular homeostasis and cell survival. During unmitigated stress conditions, however, UPR activation signaling changes to promote cell death through apoptosis. Interestingly, cancer cells take advantage of this pathway to facilitate survival and avoid apoptosis even during prolonged cell stress conditions. Here, we discuss different signaling pathways associated with UPR and focus specifically on one of the ER signaling pathways activated during UPR, inositol-requiring enzyme 1α (IRE1). The rationale is that the IRE1 pathway is associated with cell fate decisions and recognized as a promising target for cancer therapeutics. Here we discuss IRE1 inhibitors and how they might prove to be an effective cancer therapeutic.</p>\u0000 </div>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"17 4","pages":"1145-1161"},"PeriodicalIF":3.6,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10713974/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10280935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhixiang Lei, Haiyan Wang, Yiwen Zhai, Minglu Sun, Si Chen, Panfeng Yin, Xianchun Wang
{"title":"Insights into the mediation of Ca2+ signaling in the promoting effects of LETX-VI on the synthesis and release of dopamine","authors":"Zhixiang Lei, Haiyan Wang, Yiwen Zhai, Minglu Sun, Si Chen, Panfeng Yin, Xianchun Wang","doi":"10.1007/s12079-023-00783-6","DOIUrl":"10.1007/s12079-023-00783-6","url":null,"abstract":"<div>\u0000 \u0000 <p>Latroeggtoxin-VI (LETX-VI) is an active protein and was previously demonstrated to have effects on the synthesis and release of dopamine. Hererin, the involvement of Ca<sup>2+</sup> signaling in the effects of LETX-VI on dopamine was systematically investigated, using PC12 cells as a neuron model. LETX-VI was shown to promote dopamine release from PC12 cells both in the presence and absence of extracellular Ca<sup>2+</sup>; however the presence of extracellular Ca<sup>2+</sup> was favorable for enhancing the promoting effects of LETX-VI on dopamine, because LETX-VI facilitated the influx of extracellular Ca<sup>2+</sup> through the L-type calcium channels in plasma membrane (PM) to increase cytosolic Ca<sup>2+</sup> concentration. LETX-VI was able to penetrate the PM of PC12 cells to act on the Ca<sup>2+</sup> channel proteins IP3Rs and RyRs in the endoplasm reticulum (ER) membrane, opening the Ca<sup>2+</sup> channels and promoting the release of ER Ca<sup>2+</sup> to elevate cytosolic Ca<sup>2+</sup> level. With the help of intracellular Ca<sup>2+</sup> chelator BAPTA, the elevated cytosolic Ca<sup>2+</sup> level was proven to play crucial role for the enhanced promoting effects of LETX-VI on dopamine. Taken together, LETX-VI is able to open the Ca<sup>2+</sup> channels in both PM and ER membrane simultaneously to facilitate extracellular Ca<sup>2+</sup> influx and ER Ca<sup>2+</sup> release, and thus increases the cytosolic Ca<sup>2+</sup> concentration to enhance the promoting effects on the synthesis and release of dopamine.</p>\u0000 </div>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"17 4","pages":"1309-1321"},"PeriodicalIF":3.6,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10713917/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10215920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metformin combined with rapamycin ameliorates podocyte injury in idiopathic membranous nephropathy through the AMPK/mTOR signaling pathway","authors":"Meichen Ma, Yue Pan, Yue Zhang, Mei Yang, Ying Xi, Baoxu Lin, Wudi Hao, Jianhua Liu, Lina Wu, Yong Liu, Xiaosong Qin","doi":"10.1007/s12079-023-00781-8","DOIUrl":"10.1007/s12079-023-00781-8","url":null,"abstract":"<div>\u0000 \u0000 <p>Autophagy activation protects against podocyte injury in idiopathic membranous nephropathy (IMN). The AMPK/mTOR signaling pathway is a vital autophagy regulatory pathway. Metformin promotes autophagy, whereas rapamycin is an autophagy agonist. However, the therapeutic mechanisms of metformin and rapamycin in IMN remain unclear. Thus, we examined the mechanisms of action of metformin and rapamycin in IMN by regulating the AMPK/mTOR autophagy signaling pathway. Female Sprague–Dawley (SD) rats were treated with cationic bovine serum albumin (C-BSA) to establish an IMN model and were randomly divided into IMN model, metformin, rapamycin, and metformin + rapamycin groups. A control group was also established. Metformin and rapamycin were used as treatments. Renal histological changes, urinary protein excretion, the protein expression levels of key AMPK/mTOR signaling pathway proteins, renal tissue cell apoptosis, and autophagy-associated proteins (Beclin 1 and LC3) were examined. In addition, a C5b-9 sublysis model using the MPC-5 mouse podocyte cell line was established to verify the effect of metformin combined with rapamycin on podocytes. Metformin combined with rapamycin improved urinary protein excretion in IMN rats. Metformin combined with rapamycin attenuated the inflammatory response, renal fibrosis, and podocyte foot process fusion. In addition, it improved autophagy in podocytes as demonstrated by the enhanced expression of Beclin-1, p-AMPK/AMPK, LC3-II/I, and autophagosomes in podocytes and decreased p-mTOR/mTOR expression. In conclusion, metformin combined with rapamycin decreased proteinuria, improved renal fibrosis and podocyte autophagy via AMPK/mTOR pathway in IMN rats.</p>\u0000 </div>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"17 4","pages":"1405-1415"},"PeriodicalIF":3.6,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10713903/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10222369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metformin combined with rapamycin ameliorates podocyte injury in idiopathic membranous nephropathy through the AMPK/mTOR signaling pathway.","authors":"Meichen Ma, Yue Pan, Yue Zhang, Mei Yang, Ying Xi, Baoxu Lin, Wudi Hao, Jianhua Liu, Lina Wu, Yong Liu, Xiaosong Qin","doi":"10.2139/ssrn.4257549","DOIUrl":"https://doi.org/10.2139/ssrn.4257549","url":null,"abstract":"Autophagy activation protects against podocyte injury in idiopathic membranous nephropathy (IMN). The AMPK/mTOR signaling pathway is a vital autophagy regulatory pathway. Metformin promotes autophagy, whereas rapamycin is an autophagy agonist. However, the therapeutic mechanisms of metformin and rapamycin in IMN remain unclear. Thus, we examined the mechanisms of action of metformin and rapamycin in IMN by regulating the AMPK/mTOR autophagy signaling pathway. Female Sprague-Dawley (SD) rats were treated with cationic bovine serum albumin (C-BSA) to establish an IMN model and were randomly divided into IMN model, metformin, rapamycin, and metformin + rapamycin groups. A control group was also established. Metformin and rapamycin were used as treatments. Renal histological changes, urinary protein excretion, the protein expression levels of key AMPK/mTOR signaling pathway proteins, renal tissue cell apoptosis, and autophagy-associated proteins (Beclin 1 and LC3) were examined. In addition, a C5b-9 sublysis model using the MPC-5 mouse podocyte cell line was established to verify the effect of metformin combined with rapamycin on podocytes. Metformin combined with rapamycin improved urinary protein excretion in IMN rats. Metformin combined with rapamycin attenuated the inflammatory response, renal fibrosis, and podocyte foot process fusion. In addition, it improved autophagy in podocytes as demonstrated by the enhanced expression of Beclin-1, p-AMPK/AMPK, LC3-II/I, and autophagosomes in podocytes and decreased p-mTOR/mTOR expression. In conclusion, metformin combined with rapamycin decreased proteinuria, improved renal fibrosis and podocyte autophagy via AMPK/mTOR pathway in IMN rats. The metformin and rapamycin decreased proteinuria and inproved renal fibrosis in IMN model rats.","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"1 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47747792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}