miRNAs as short non-coding RNAs in regulating doxorubicin resistance.

IF 3.6 3区 生物学 Q3 CELL BIOLOGY
Sepideh Mirzaei, Mahshid Deldar Abad Paskeh, Farhad Adhami Moghadam, Maliheh Entezari, Zeinab Khazaei Koohpar, Elahe Sadat Hejazi, Shamin Rezaei, Amirabbas Kakavand, Maryam Aboutalebi, Mohammad Arad Zandieh, Romina Rajabi, Shokooh Salimimoghadam, Afshin Taheriazam, Mehrdad Hashemi, Saeed Samarghandian
{"title":"miRNAs as short non-coding RNAs in regulating doxorubicin resistance.","authors":"Sepideh Mirzaei, Mahshid Deldar Abad Paskeh, Farhad Adhami Moghadam, Maliheh Entezari, Zeinab Khazaei Koohpar, Elahe Sadat Hejazi, Shamin Rezaei, Amirabbas Kakavand, Maryam Aboutalebi, Mohammad Arad Zandieh, Romina Rajabi, Shokooh Salimimoghadam, Afshin Taheriazam, Mehrdad Hashemi, Saeed Samarghandian","doi":"10.1007/s12079-023-00789-0","DOIUrl":null,"url":null,"abstract":"<p><p>The treatment of cancer patients has been prohibited by chemoresistance. Doxorubicin (DOX) is an anti-tumor compound disrupting proliferation and triggering cell cycle arrest via inhibiting activity of topoisomerase I and II. miRNAs are endogenous RNAs localized in cytoplasm to reduce gene level. Abnormal expression of miRNAs changes DOX cytotoxicity. Overexpression of tumor-promoting miRNAs induces DOX resistance, while tumor-suppressor miRNAs inhibit DOX resistance. The miRNA-mediated regulation of cell death and hallmarks of cancer can affect response to DOX chemotherapy in tumor cells. The transporters such as P-glycoprotein are regulated by miRNAs in DOX chemotherapy. Upstream mediators including lncRNAs and circRNAs target miRNAs in affecting capacity of DOX. The response to DOX chemotherapy can be facilitated after administration of agents that are mostly phytochemicals including curcumol, honokiol and ursolic acid. These agents can regulate miRNA expression increasing DOX's cytotoxicity. Since delivery of DOX alone or in combination with other drugs and genes can cause synergistic impact, the nanoparticles have been introduced for drug sensitivity. The non-coding RNAs determine the response of tumor cells to doxorubicin chemotherapy. microRNAs play a key role in this case and they can be sponged by lncRNAs and circRNAs, showing interaction among non-coding RNAs in the regulation of doxorubicin sensitivity.</p>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":" ","pages":"1181-1202"},"PeriodicalIF":3.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10713513/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12079-023-00789-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The treatment of cancer patients has been prohibited by chemoresistance. Doxorubicin (DOX) is an anti-tumor compound disrupting proliferation and triggering cell cycle arrest via inhibiting activity of topoisomerase I and II. miRNAs are endogenous RNAs localized in cytoplasm to reduce gene level. Abnormal expression of miRNAs changes DOX cytotoxicity. Overexpression of tumor-promoting miRNAs induces DOX resistance, while tumor-suppressor miRNAs inhibit DOX resistance. The miRNA-mediated regulation of cell death and hallmarks of cancer can affect response to DOX chemotherapy in tumor cells. The transporters such as P-glycoprotein are regulated by miRNAs in DOX chemotherapy. Upstream mediators including lncRNAs and circRNAs target miRNAs in affecting capacity of DOX. The response to DOX chemotherapy can be facilitated after administration of agents that are mostly phytochemicals including curcumol, honokiol and ursolic acid. These agents can regulate miRNA expression increasing DOX's cytotoxicity. Since delivery of DOX alone or in combination with other drugs and genes can cause synergistic impact, the nanoparticles have been introduced for drug sensitivity. The non-coding RNAs determine the response of tumor cells to doxorubicin chemotherapy. microRNAs play a key role in this case and they can be sponged by lncRNAs and circRNAs, showing interaction among non-coding RNAs in the regulation of doxorubicin sensitivity.

Abstract Image

mirna作为短链非编码rna调控阿霉素耐药。
由于化疗耐药性,癌症患者的治疗一直被禁止。多柔比星(DOX)是一种抗肿瘤化合物,通过抑制拓扑异构酶I和II的活性,破坏增殖并触发细胞周期阻滞。mirna是内源性rna,定位于细胞质中以降低基因水平。mirna的异常表达改变DOX的细胞毒性。促肿瘤mirna过表达诱导DOX耐药,而抑肿瘤mirna抑制DOX耐药。mirna介导的细胞死亡和癌症标志的调节可以影响肿瘤细胞对DOX化疗的反应。DOX化疗中p糖蛋白等转运体受mirna调控。上游介质包括lncrna和circrna靶向mirna影响DOX的能力。在给药后,对DOX化疗的反应可以促进,主要是植物化学物质,包括姜黄酚、厚朴酚和熊果酸。这些药物可以调节miRNA的表达,增加DOX的细胞毒性。由于DOX单独或与其他药物和基因联合递送可引起协同影响,因此引入纳米颗粒用于药物敏感性。非编码rna决定肿瘤细胞对阿霉素化疗的反应。microrna在这种情况下发挥了关键作用,它们可以被lncrna和circrna所覆盖,这表明非编码rna在调节阿霉素敏感性方面存在相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
4.90%
发文量
40
期刊介绍: The Journal of Cell Communication and Signaling provides a forum for fundamental and translational research. In particular, it publishes papers discussing intercellular and intracellular signaling pathways that are particularly important to understand how cells interact with each other and with the surrounding environment, and how cellular behavior contributes to pathological states. JCCS encourages the submission of research manuscripts, timely reviews and short commentaries discussing recent publications, key developments and controversies. Research manuscripts can be published under two different sections : In the Pathology and Translational Research Section (Section Editor Andrew Leask) , manuscripts report original research dealing with celllular aspects of normal and pathological signaling and communication, with a particular interest in translational research. In the Molecular Signaling Section (Section Editor Satoshi Kubota) manuscripts report original signaling research performed at molecular levels with a particular interest in the functions of intracellular and membrane components involved in cell signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信