{"title":"High glucose-induced IL-7/IL-7R upregulation of dermal fibroblasts inhibits angiogenesis in a paracrine way in delayed diabetic wound healing","authors":"Ruikang Gao, Peng Zhou, YiQing Li, Qin Li","doi":"10.1007/s12079-023-00754-x","DOIUrl":"10.1007/s12079-023-00754-x","url":null,"abstract":"<div>\u0000 \u0000 <p>It is widely acknowledged that diabetes leads to slow wound healing and ulceration, and severe serious diabetic foot ulceration may result in amputation. In recent years, much emphasis has been placed on exploring diabetic wound healing to protect patients from adverse events. We recently found interleukin-7 (IL-7), a growth factor for B-cells and T-cells, and its receptor was significantly upregulated in high glucose-induced fibroblasts and skin of diabetic mice. Moreover, IL-7 stimulated fibroblasts secreted ANGPTL4, which inhibited angiogenesis of endothelial cells resulting in delayed wound healing. In our previous study, fibroblasts, endothelial cells and keratinocytes were exposed to normal glucose (5.5 mM) or high glucose (30 mM) medium for 24 h, and RNA sequencing showed that IL-7 and IL-7R were significantly upregulated in fibroblasts. To remove the effect of high glucose and explore the influence of IL-7, exogenous rMuIL-7 used to treat normal mice led to delayed wound healing by inhibiting angiogenesis. Vitro experiments revealed that IL-7-induced fibroblasts inhibited endothelial cell proliferation, migration and angiogenesis. Further experiments showed that fibroblast angiopoietin-like-4 (ANGPTL4) secretion exhibited the inhibitory effect which was blocked by culture with the corresponding neutralizing antibody. Overall, our study revealed signaling pathways associated with diabetic wound healing and provided the foothold for further studies on delayed wound healing in this patient population.</p>\u0000 </div>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"17 3","pages":"1023-1038"},"PeriodicalIF":4.1,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10409704/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9967558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joshua M. Barkin, Brady Jin-Smith, Kendle Torok, Liya Pi
{"title":"Significance of CCNs in liver regeneration","authors":"Joshua M. Barkin, Brady Jin-Smith, Kendle Torok, Liya Pi","doi":"10.1007/s12079-023-00762-x","DOIUrl":"10.1007/s12079-023-00762-x","url":null,"abstract":"<div>\u0000 \u0000 <p>The liver has an inherent regenerative capacity via hepatocyte proliferation after mild-to-modest damage. When hepatocytes exhaust their replicative ability during chronic or severe liver damage, liver progenitor cells (LPC), also termed oval cells (OC) in rodents, are activated in the form of ductular reaction (DR) as an alternative pathway. LPC is often intimately associated with hepatic stellate cells (HSC) activation to promote liver fibrosis. The Cyr61/CTGF/Nov (CCN) protein family consists of six extracellular signaling modulators (CCN1–CCN6) with affinity to a repertoire of receptors, growth factors, and extracellular matrix proteins. Through these interactions, CCN proteins organize microenvironments and modulate cell signalings in a diverse variety of physiopathological processes. In particular, their binding to subtypes of integrin (αvβ5, αvβ3, α6β1, αvβ6, etc.) influences the motility and mobility of macrophages, hepatocytes, HSC, and LPC/OC during liver injury. This paper summarizes the current understanding of the significance of <i>CCN</i> genes in liver regeneration in relation to hepatocyte-driven or LPC/OC-mediated pathways. Publicly available datasets were also searched to compare dynamic levels of CCNs in developing and regenerating livers. These insights not only add to our understanding of the regenerative capability of the liver but also provide potential targets for the pharmacological management of liver repair in the clinical setting.</p>\u0000 </div>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"17 2","pages":"321-332"},"PeriodicalIF":4.1,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326177/pdf/12079_2023_Article_762.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9796777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CCN proteins: opportunities for clinical studies—a personal perspective","authors":"Herman Yeger","doi":"10.1007/s12079-023-00761-y","DOIUrl":"10.1007/s12079-023-00761-y","url":null,"abstract":"<div>\u0000 \u0000 <p>The diverse members of the CCN family now designated as CCN1(CYR61), CCN2 (CTGF), CCN3(NOV), CCN4(WISP1), CCN5(WISP2), CCN6(WISP3) are a conserved matricellular family of proteins exhibiting a spectrum of functional properties throughout all organs in the body. Interaction with cell membrane receptors such as integrins trigger intracellular signaling pathways. Proteolytically cleaved fragments (constituting the active domains) can be transported to the nucleus and perform transcriptional relevant functional activities. Notably, as also found in other protein families some members act opposite to others creating a system of functionally relevant checks and balances. It has become apparent that these proteins are secreted into the circulation, are quantifiable, and can serve as disease biomarkers. How they might also serve as homeostatic regulators is just becoming appreciated. In this review I have attempted to highlight the most recent evidence under the subcategories of cancer and non-cancer relevant that could lead to potential therapeutic approaches or ideas that can be factored into clinical advances. I have added my own personal perspective on feasibility.</p>\u0000 </div>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"17 2","pages":"333-352"},"PeriodicalIF":4.1,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326213/pdf/12079_2023_Article_761.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9784288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The impact of cellular senescence in human adipose tissue","authors":"Annika Nerstedt, Ulf Smith","doi":"10.1007/s12079-023-00769-4","DOIUrl":"10.1007/s12079-023-00769-4","url":null,"abstract":"<div>\u0000 \u0000 <p>In the last decades the prevalence of obesity has increased dramatically, and the worldwide epidemic of obesity and related metabolic diseases has contributed to an increased interest for the adipose tissue (AT), the primary site for storage of lipids, as a metabolically dynamic and endocrine organ. Subcutaneous AT is the depot with the largest capacity to store excess energy and when its limit for storage is reached hypertrophic obesity, local inflammation, insulin resistance and ultimately type 2 diabetes (T2D) will develop. Hypertrophic AT is also associated with a dysfunctional adipogenesis, depending on the inability to recruit and differentiate new mature adipose cells. Lately, cellular senescence (CS), an aging mechanism defined as an irreversible growth arrest that occurs in response to various cellular stressors, such as telomere shortening, DNA damage and oxidative stress, has gained a lot of attention as a regulator of metabolic tissues and aging-associated conditions. The abundance of senescent cells increases not only with aging but also in hypertrophic obesity independent of age. Senescent AT is characterized by dysfunctional cells, increased inflammation, decreased insulin sensitivity and lipid storage. AT resident cells, such as progenitor cells (APC), non-proliferating mature cells and microvascular endothelial cells are affected with an increased senescence burden. Dysfunctional APC have both an impaired adipogenic and proliferative capacity. Interestingly, human mature adipose cells from obese hyperinsulinemic individuals have been shown to re-enter the cell cycle and senesce, which indicates an increased endoreplication. CS was also found to be more pronounced in mature cells from T2D individuals, compared to matched non-diabetic individuals, with decreased insulin sensitivity and adipogenic capacity.</p>\u0000 </div>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"17 3","pages":"563-573"},"PeriodicalIF":4.1,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10409694/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9960528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MiR-218-5p promotes trophoblast infiltration and inhibits endoplasmic reticulum/oxidative stress by reducing UBE3A-mediated degradation of SATB1","authors":"Xiao Gu, Xiaomei Sun, Yanling Yu, Lei Li","doi":"10.1007/s12079-023-00751-0","DOIUrl":"10.1007/s12079-023-00751-0","url":null,"abstract":"<div>\u0000 \u0000 <p>This research evaluated the effects of miR-218-5p on trophoblast infiltration and endoplasmic reticulum/oxidative stress during preeclampsia (PE). The expression of miR-218-5p and special AT-rich sequence binding protein 1 (SATB1) in placental tissues from 25 patients with PE and 25 normal pregnant subjects was determined using qRT-PCR and western blotting. Cell invasion and cell migration were detected by performing Transwell assays and scratch assays, respectively. MMP-2/9, TIMP1/2, HIF-1α, p-eIF2α, and ATF4 expression in cells was assessed through western blotting. Intracellular reactive oxygen species were detected using 2,7-dichlorodihydrofluorescein diacetate, and intracellular malondialdehyde and superoxide dismutase activities were determined with kits. Dual-luciferase and RNA pull-down assays were performed to verify the interaction between miR-218-5p and UBE3A. Co-immunoprecipitation and western blotting were used to detect the ubiquitination levels of SATB1. A rat model of PE was established, and an miR-218-5p agomir was injected into rat placental tissues. The pathological characteristics of placental tissues were detected via HE staining, and MMP-2/9, TIMP1/2, p-eIF2α, and ATF4 expression in rat placental tissues was determined through western blotting. MiR-218-5p and SATB1 were expressed at low levels, while UBE3A was highly expressed in the placental tissues of patients with PE. The transfection of an miR-218-5p mimic, UBE3A shRNA, or an SATB1 overexpression vector into HTR-8/SVneo cells promoted trophoblast infiltration and inhibited endoplasmic reticulum/oxidative stress. It was determined that UBE3A is a target of miR-218-5p; UBE3A induces ubiquitin-mediated degradation of SATB1. In PE model rats, miR-218-5p alleviated pathological features, promoted trophoblast infiltration, and inhibited endoplasmic reticulum/oxidative stress. MiR-218-5p targeted and negatively regulated UBE3A expression to inhibit ubiquitin-mediated SATB1 degradation, promote trophoblast infiltration, and inhibit endoplasmic reticulum/oxidative stress.</p>\u0000 </div>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"17 3","pages":"993-1008"},"PeriodicalIF":4.1,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10409978/pdf/12079_2023_Article_751.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10125463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The regulation and functions of the matricellular CCN proteins induced by shear stress","authors":"Yang-Kao Wang, Hung-Kai Weng, Fan-E Mo","doi":"10.1007/s12079-023-00760-z","DOIUrl":"10.1007/s12079-023-00760-z","url":null,"abstract":"<div>\u0000 \u0000 <p>Shear stress is a frictional drag generated by the flow of fluid, such as blood or interstitial fluid, and plays a critical role in regulating cellular gene expression and functional phenotype. The matricellular CCN family proteins are dynamically regulated by shear stress of different flow patterns, and their expression significantly alters the microenvironment of cells. Secreted CCN proteins mainly bind to several cell surface integrin receptors to mediate their diverse functions in regulating cell survival, function, and behavior. Gene-knockout studies indicate major functions of CCN proteins in the cardiovascular and skeletal systems, the two primary systems in which CCN expressions are regulated by shear stress. In the cardiovascular system, the endothelium is directly exposed to vascular shear stress. Unidirectional laminar blood flow generates laminar shear stress, which promotes a mature endothelial phenotype and upregulates anti-inflammatory CCN3 expression. In contrast, disturbed flow generates oscillatory shear stress, which induces endothelial dysfunction through the induction of CCN1 and CCN2. Shear-induced CCN1 binds to integrin α6β1 and promotes superoxide production, NF-κB activation, and inflammatory gene expression in endothelial cells. Although the interaction between shear stress and CCN4-6 is not clear, CCN 4 exhibits a proinflammatory property and CCN5 inhibits vascular cell growth and migration. The crucial roles of CCN proteins in cardiovascular development, homeostasis, and disease are evident but not fully understood. In the skeletal system, mechanical loading on bone generates shear stress from interstitial fluid in the lacuna-canalicular system and promotes osteoblast differentiation and bone formation. CCN1 and CCN2 are induced and potentially mediate fluid shear stress mechanosensing in osteocytes. However, the exact roles of interstitial shear stress-induced CCN1 and CCN2 in bone are still not clear. In contrast to other CCN family proteins, CCN3 inhibits osteoblast differentiation, although its regulation by interstitial shear stress in osteocytes has not been reported. The induction of CCN proteins by shear stress in bone and their functions remain largely unknown and merit further investigation. This review discusses the expression and functions of CCN proteins regulated by shear stress in physiological conditions, diseases, and cell culture models. The roles between CCN family proteins can be compensatory or counteractive in tissue remodeling and homeostasis.</p>\u0000 </div>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"17 2","pages":"361-370"},"PeriodicalIF":4.1,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326207/pdf/12079_2023_Article_760.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10169329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CCN–Hippo YAP signaling in vision and its role in neuronal, glial and vascular cell function and behavior","authors":"Brahim Chaqour","doi":"10.1007/s12079-023-00759-6","DOIUrl":"10.1007/s12079-023-00759-6","url":null,"abstract":"<div>\u0000 \u0000 <p>The retina is a highly specialized tissue composed of a network of neurons, glia, and vascular and epithelial cells; all working together to coordinate and transduce visual signals to the brain. The retinal extracellular matrix (ECM) shapes the structural environment in the retina but also supplies resident cells with proper chemical and mechanical signals to regulate cell function and behavior and maintain tissue homeostasis. As such, the ECM affects virtually all aspects of retina development, function and pathology. ECM-derived regulatory cues influence intracellular signaling and cell function. Reversibly, changes in intracellular signaling programs result in alteration of the ECM and downstream ECM-mediated signaling network. Our functional studies in vitro, genetic studies in mice, and multi omics analyses have provided evidence that a subset of ECM proteins referred to as cellular communication network (CCN) affects several aspects of retinal neuronal and vascular development and function. Retinal progenitor, glia and vascular cells are major sources of CCN proteins particularly CCN1 and CCN2. We found that expression of the CCN1 and CCN2 genes is dependent on the activity of YAP, the core component of the hippo-YAP signaling pathway. Central to the Hippo pathway is a conserved cascade of inhibitory kinases that regulate the activity of YAP, the final transducer of this pathway. Reversibly, YAP expression and/or activity is dependent on CCN1 and CCN2 downstream signaling, which creates a positive or negative feedforward loop driving developmental processes (e.g., neurogenesis, gliogenesis, angiogenesis, barriergenesis) and, when dysregulated, disease progression in a range of retinal neurovascular disorders. Here we describe mechanistic hints involving the CCN–Hippo–YAP regulatory axis in retina development and function. This regulatory pathway represents an opportunity for targeted therapies in neurovascular and neurodegenerative diseases.</p>\u0000 </div>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"17 2","pages":"255-262"},"PeriodicalIF":4.1,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326198/pdf/12079_2023_Article_759.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10169326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fernanda Marconi Roversi, Maura Lima Pereira Bueno, Juliete Aparecida Francisco da Silva, Guilherme Rossi Assis-Mendonça, Sara Teresinha Olalla Saad
{"title":"Optimized multiplex immunofluorescence for the characterization of tumor immune microenvironment in neoplastic paraffin-preserved tissues","authors":"Fernanda Marconi Roversi, Maura Lima Pereira Bueno, Juliete Aparecida Francisco da Silva, Guilherme Rossi Assis-Mendonça, Sara Teresinha Olalla Saad","doi":"10.1007/s12079-023-00753-y","DOIUrl":"10.1007/s12079-023-00753-y","url":null,"abstract":"<div>\u0000 \u0000 <p>The study of neoplastic cells enabled the discovery of important tumor-related biomarkers which resulted in new forms of early diagnosis, therapeutic options, and prognostic markers. Thus, immunofluorescence (IF), a high throughput imaging technology, represents a valuable method that enables the virtual characterization and localization of diverse cell types and targets, preserving tissue architecture and spatial surroundings. IF staining and analysis of formalin-fixed paraffin-embedded (FFPE) tissues are considered a challenge due to several difficulties, such as tissue autofluorescence, non-specific antibody binding, and image acquisition and quality. This study aimed to develop a multiplex-fluorescence staining technique with high-contrast and high-quality multiple-color images to enrich the investigation of important biomarkers. We present a robust optimized multiple-immunofluorescence procedure that reduced sample autofluorescence, enabled the use of simultaneous antibodies on the same sample, and showed super-resolution imaging through precise antigen localization. We illustrated the utility of this powerful method in FFPE neoplastic appendix, lymph node and bone marrow biopsies, and a 3D-coculture system, in which cells are enabled to grow and interact with their surroundings in all 3D dimensions. Our optimized multiple-immunofluorescence method represents a powerful tool for better understanding the complexity of tumor cells, characterizing cell populations and spatial localization, revealing predictive and prognostic biomarkers, and identifying immunologic phenotypes in a single and limited sample. This valuable IF protocol successfully enables tumor microenvironment profiling that could contribute to the study of cellular crosstalk and the niche, and to the identification of predictive biomarkers for neoplasms.</p>\u0000 </div>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"17 3","pages":"1055-1065"},"PeriodicalIF":4.1,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10409948/pdf/12079_2023_Article_753.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10134037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Erawan Borkham-Kamphorst, Steffen K. Meurer, Ralf Weiskirchen
{"title":"Expression and biological function of the cellular communication network factor 5 (CCN5) in primary liver cells","authors":"Erawan Borkham-Kamphorst, Steffen K. Meurer, Ralf Weiskirchen","doi":"10.1007/s12079-023-00757-8","DOIUrl":"10.1007/s12079-023-00757-8","url":null,"abstract":"<div>\u0000 \u0000 <p>The cellular (centralized) communication network (CCN) factor protein family contains six small secreted cysteine-rich proteins sharing high structural similarity. These matricellular proteins have vital biological functions in cell adhesion, migration, cell cycle progression, and control of production and degradation of extracellular matrix. However, in liver the biological functions of CCN proteins become most visible during hepatic injury, disease, and remodeling. In particular, most of the hepatic functions of CCN proteins were derived from CCN2/CTGF, which becomes highly expressed in damaged hepatocytes and acts as a profibrogenic molecule. On the contrary, CCN1/CYR61 seems to have opposite effects, while the biological activity during hepatic fibrosis is somewhat controversially discussed for other CCN family members. In the present study, we analyzed the expression of CCN5/WISP2 in cultures of different types of primary liver cells and in an experimental model of hepatic fibrosis. We found that CCN5 is expressed in hepatic stellate cells, myofibroblasts and portal myofibroblasts, while CCN5 expression is virtually absent in hepatocytes. During hepatic fibrogenesis, CCN5 is significantly upregulated. Overexpression of CCN5 in portal myofibroblasts reduced expression of transforming growth factor-β receptor I (ALK5) and concomitant Smad2 activation, whereas JunB expression is upregulated. Moreover, elevated expression of CCN5 induces endoplasmic reticulum stress, unfolded protein response and apoptosis in portal myofibroblasts. We suggest that upregulated expression of CCN5 might be an intrinsic control mechanism that counteracts overshooting fibrotic responses in profibrogenic liver cells.</p>\u0000 </div>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"17 2","pages":"307-320"},"PeriodicalIF":4.1,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326238/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9795714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cooperation is the key: the CCN biological system as a gate to high complex protein superfamilies’ signaling","authors":"Bernard Perbal, Matthieu Perbal, Annick Perbal","doi":"10.1007/s12079-023-00749-8","DOIUrl":"10.1007/s12079-023-00749-8","url":null,"abstract":"<div>\u0000 \u0000 <p>Cellular signaling is generally understood as the support of communication between contiguous cells belonging to the same tissue or cells being far apart of each other, at a molecular scale, when the message emitted by the transmitters is traveling in liquid or solid matter to reach recipient targets. Subcellular signaling is also important to ensure the proper cell constitution and functioning. However cell signaling is mostly used in the first understanding, to describe how the message sent from one point to another one, will reach a target where it will be interpreted. The Cellular Communication Network (CCN) factors (Perbal et al. 2018) constitute a family of biological regulators thought to be responsible for signaling pathways coordination (Perbal 2018). Indeed, these proteins interact with a diverse group of cell receptors, such as integrins, low density lipoprotein receptors, heparan sulfate proteoglycan receptors (HSPG), and the immunoglobulin superfamily expressed exclusively in the nervous system, or with soluble factors such as bone morphogenetic proteins (BMPS) and other growth factors such as vascular endothelial growth factor, fibroblastic growth factor, and transforming growth factor (TGFbeta). Starting from the recapitulation of basic concepts in enzymology and protein-ligands interactions, we consider, in this manuscript, interpretations of the mechanistic interactions that have been put forward to explain the diversity of CCN proteins biological activities. We suggest that the cross-talks between superfamilies of proteins under the control of CCNs might play a central role in the coordination of developmental signaling pathways\u0000</p>\u0000 </div>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"17 2","pages":"233-253"},"PeriodicalIF":4.1,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326204/pdf/12079_2023_Article_749.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9795719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}