Gastrokine 1 transferred by gastric cancer exosomes inhibits growth and invasion of gastric cancer cells in vitro and in vivo

IF 3.6 3区 生物学 Q3 CELL BIOLOGY
Lingling Tian, Li Tang, Xu Li, Liuye Huang
{"title":"Gastrokine 1 transferred by gastric cancer exosomes inhibits growth and invasion of gastric cancer cells in vitro and in vivo","authors":"Lingling Tian,&nbsp;Li Tang,&nbsp;Xu Li,&nbsp;Liuye Huang","doi":"10.1002/ccs3.12044","DOIUrl":null,"url":null,"abstract":"<p>In gastric cancer, gastrokine 1 (GKN1) is a potential theragnostic marker while the related mechanisms remain elusive. Exosomes mediate intercellular communications via transferring various molecules, yet there are limited research studies on the specific cargos of gastric cancer exosomes and the associated mechanisms in this disease. In the present study, AGS and N87-C cells were transfected with an overexpressed GKN1 plasmid, followed by extraction of exosomes. The study utilized gastric cancer cell lines and a xenograft mouse model to investigate the functional significance of exosomal GKN1. Cell proliferation, metastasis, and apoptosis were assessed through CCK-8, Transwell, and flow cytometry assays, respectively. The study further explored the mechanism of exosomal GKN1 and its interaction with the PI3K/AKT/mTOR signaling pathways, including immunofluorescence and western blot analyses. Exosomal GKN1 was observed to suppress cell proliferation and invasion while enhancing apoptosis. This effect was attributed to the modulation of key proteins involved in cellular processes, including Ki-67, MMP-9, Bcl-2, Bax, caspase-3, and caspase-9, ultimately impacting the PI3K/AKT/mTOR signaling pathway. The findings suggest that exosomal GKN1 exerts inhibitory effects on gastric cancer cell growth and invasion through the regulation of the PI3K/AKT/mTOR signaling cascade, both in experimental cell cultures and animal models.</p>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"18 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ccs3.12044","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ccs3.12044","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In gastric cancer, gastrokine 1 (GKN1) is a potential theragnostic marker while the related mechanisms remain elusive. Exosomes mediate intercellular communications via transferring various molecules, yet there are limited research studies on the specific cargos of gastric cancer exosomes and the associated mechanisms in this disease. In the present study, AGS and N87-C cells were transfected with an overexpressed GKN1 plasmid, followed by extraction of exosomes. The study utilized gastric cancer cell lines and a xenograft mouse model to investigate the functional significance of exosomal GKN1. Cell proliferation, metastasis, and apoptosis were assessed through CCK-8, Transwell, and flow cytometry assays, respectively. The study further explored the mechanism of exosomal GKN1 and its interaction with the PI3K/AKT/mTOR signaling pathways, including immunofluorescence and western blot analyses. Exosomal GKN1 was observed to suppress cell proliferation and invasion while enhancing apoptosis. This effect was attributed to the modulation of key proteins involved in cellular processes, including Ki-67, MMP-9, Bcl-2, Bax, caspase-3, and caspase-9, ultimately impacting the PI3K/AKT/mTOR signaling pathway. The findings suggest that exosomal GKN1 exerts inhibitory effects on gastric cancer cell growth and invasion through the regulation of the PI3K/AKT/mTOR signaling cascade, both in experimental cell cultures and animal models.

Abstract Image

胃癌外泌体转移的胃泌素 1 在体外和体内抑制胃癌细胞的生长和侵袭
在胃癌中,胃泌素1(GKN1)是一种潜在的诊断标志物,但其相关机制却仍然难以捉摸。外泌体通过传递各种分子介导细胞间的通讯,但有关胃癌外泌体的特定载体及其相关机制的研究却很有限。在本研究中,用过表达的 GKN1 质粒转染 AGS 和 N87-C 细胞,然后提取外泌体。研究利用胃癌细胞系和异种移植小鼠模型来探讨外泌体 GKN1 的功能意义。细胞增殖、转移和凋亡分别通过 CCK-8、Transwell 和流式细胞术进行评估。研究进一步探讨了外泌体GKN1及其与PI3K/AKT/mTOR信号通路相互作用的机制,包括免疫荧光和Western印迹分析。研究观察到外泌体 GKN1 可抑制细胞增殖和侵袭,同时增强细胞凋亡。这种效应归因于参与细胞过程的关键蛋白的调节,包括Ki-67、MMP-9、Bcl-2、Bax、caspase-3和caspase-9,最终影响PI3K/AKT/mTOR信号通路。研究结果表明,无论是在实验细胞培养还是动物模型中,外泌体GKN1都能通过调节PI3K/AKT/mTOR信号级联对胃癌细胞的生长和侵袭产生抑制作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
4.90%
发文量
40
期刊介绍: The Journal of Cell Communication and Signaling provides a forum for fundamental and translational research. In particular, it publishes papers discussing intercellular and intracellular signaling pathways that are particularly important to understand how cells interact with each other and with the surrounding environment, and how cellular behavior contributes to pathological states. JCCS encourages the submission of research manuscripts, timely reviews and short commentaries discussing recent publications, key developments and controversies. Research manuscripts can be published under two different sections : In the Pathology and Translational Research Section (Section Editor Andrew Leask) , manuscripts report original research dealing with celllular aspects of normal and pathological signaling and communication, with a particular interest in translational research. In the Molecular Signaling Section (Section Editor Satoshi Kubota) manuscripts report original signaling research performed at molecular levels with a particular interest in the functions of intracellular and membrane components involved in cell signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信