Noah F de Leeuw,Rashmi Budhathoki,Liam J Russell,Dinah Loerke,J Todd Blankenship
{"title":"Nuclei as mechanical bumpers during epithelial remodeling.","authors":"Noah F de Leeuw,Rashmi Budhathoki,Liam J Russell,Dinah Loerke,J Todd Blankenship","doi":"10.1083/jcb.202405078","DOIUrl":"https://doi.org/10.1083/jcb.202405078","url":null,"abstract":"The morphogenesis of developing tissues relies on extensive cellular rearrangements in shape, position, and identity. A key process in reshaping tissues is cell intercalation-driven elongation, where epithelial cells align and intercalate along a common axis. Typically, analyses focus on how peripheral cortical forces influence cell shape changes. Less attention is given to how inhomogeneities in internal structures, particularly the nucleus, impact cell shaping. Here, we examine how pulsed contractile and extension dynamics interact with the nucleus in elongating Drosophila embryos. Our data show that tightly packed nuclei in apical layers hinder tissue remodeling/oscillatory behaviors. We identify two mechanisms for resolving internuclear tensions: nuclear deformation and dispersion. Embryos with non-deformable nuclei use nuclear dispersion to maintain near-normal extensile rates, while those with non-dispersible nuclei due to microtubule inhibition exhibit disruptions in contractile behaviors. Disrupting both mechanisms leads to severe tissue extension defects and cell extrusion. These findings highlight the critical role of nuclear shape and positioning in topological remodeling of epithelia.","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"65 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142325113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Arf1-dependent LRBA recruitment to Rab4 endosomes is required for endolysosome homeostasis.","authors":"Viktória Szentgyörgyi,Leon Maximilian Lueck,Daan Overwijn,Danilo Ritz,Nadja Zoeller,Alexander Schmidt,Maria Hondele,Anne Spang,Shahrzad Bakhtiar","doi":"10.1083/jcb.202401167","DOIUrl":"https://doi.org/10.1083/jcb.202401167","url":null,"abstract":"Deleterious mutations in the lipopolysaccharide responsive beige-like anchor protein (LRBA) gene cause severe childhood immune dysregulation. The complexity of the symptoms involving multiple organs and the broad range of unpredictable clinical manifestations of LRBA deficiency complicate the choice of therapeutic interventions. Although LRBA has been linked to Rab11-dependent trafficking of the immune checkpoint protein CTLA-4, its precise cellular role remains elusive. We show that LRBA, however, only slightly colocalizes with Rab11. Instead, LRBA is recruited by members of the small GTPase Arf protein family to the TGN and to Rab4+ endosomes, where it controls intracellular traffic. In patient-derived fibroblasts, loss of LRBA led to defects in the endosomal pathway promoting the accumulation of enlarged endolysosomes and lysosome secretion. Thus, LRBA appears to regulate flow through the endosomal system on Rab4+ endosomes. Our data strongly suggest functions of LRBA beyond CTLA-4 trafficking and provide a conceptual framework to develop new therapies for LRBA deficiency.","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"9 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142325112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Claudin 7 suppresses invasion and metastasis through repression of a smooth muscle actin program.","authors":"Junior J West,Rosela Golloshi,Chae Yun Cho,Yuqian Wang,Parker Stevenson,Genevieve Stein-O'Brien,Elana J Fertig,Andrew J Ewald","doi":"10.1083/jcb.202311002","DOIUrl":"https://doi.org/10.1083/jcb.202311002","url":null,"abstract":"Metastasis initiates when cancer cells escape from the primary tumor, which requires changes to intercellular junctions. Claudins are transmembrane proteins that form the tight junction, and their expression is reduced in aggressive breast tumors. However, claudins' roles during breast cancer metastasis remain unclear. We used gain- and loss-of-function genetics in organoids isolated from murine breast cancer models to establish that Cldn7 suppresses invasion and metastasis. Transcriptomic analysis revealed that Cldn7 knockdown induced smooth muscle actin (SMA)-related genes and a broader mesenchymal phenotype. We validated our results in human cell lines, fresh human tumor tissue, bulk RNA-seq, and public single-cell RNA-seq data. We consistently observed an inverse relationship between Cldn7 expression and expression of SMA-related genes. Furthermore, knockdown and overexpression of SMA-related genes demonstrated that they promote breast cancer invasion. Our data reveal that Cldn7 suppresses breast cancer invasion and metastasis through negative regulation of SMA-related and mesenchymal gene expression.","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"216 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Donia Zaidi,Kaviya Chinnappa,Berfu Nur Yigit,Valeria Viola,Carmen Cifuentes-Diaz,Ammar Jabali,Ana Uzquiano,Emilie Lemesre,Franck Perez,Julia Ladewig,Julien Ferent,Nurhan Ozlu,Fiona Francis
{"title":"Forebrain Eml1 depletion reveals early centrosomal dysfunction causing subcortical heterotopia.","authors":"Donia Zaidi,Kaviya Chinnappa,Berfu Nur Yigit,Valeria Viola,Carmen Cifuentes-Diaz,Ammar Jabali,Ana Uzquiano,Emilie Lemesre,Franck Perez,Julia Ladewig,Julien Ferent,Nurhan Ozlu,Fiona Francis","doi":"10.1083/jcb.202310157","DOIUrl":"https://doi.org/10.1083/jcb.202310157","url":null,"abstract":"Subcortical heterotopia is a cortical malformation associated with epilepsy, intellectual disability, and an excessive number of cortical neurons in the white matter. Echinoderm microtubule-associated protein like 1 (EML1) mutations lead to subcortical heterotopia, associated with abnormal radial glia positioning in the cortical wall, prior to malformation onset. This perturbed distribution of proliferative cells is likely to be a critical event for heterotopia formation; however, the underlying mechanisms remain unexplained. This study aimed to decipher the early cellular alterations leading to abnormal radial glia. In a forebrain conditional Eml1 mutant model and human patient cells, primary cilia and centrosomes are altered. Microtubule dynamics and cell cycle kinetics are also abnormal in mouse mutant radial glia. By rescuing microtubule formation in Eml1 mutant embryonic brains, abnormal radial glia delamination and heterotopia volume were significantly reduced. Thus, our new model of subcortical heterotopia reveals the causal link between Eml1's function in microtubule regulation and cell position, both critical for correct cortical development.","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"23 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ER-plasma membrane contact sites deliver ER lipids and proteins for rapid cell surface expansion.","authors":"Madison Smith,Lincoln Gay,Markus Babst","doi":"10.1083/jcb.202308137","DOIUrl":"https://doi.org/10.1083/jcb.202308137","url":null,"abstract":"As a consequence of hypoosmotic shock, yeast cells swell rapidly and increase the surface area by ∼20% in 20 s. Approximately, 35% of this surface increase is mediated by the ER-plasma membrane contact sites, specifically the tricalbins, which are required for the delivery of both lipids and the GPI-anchored protein Crh2 from the cortical ER to the plasma membrane. Therefore, we propose a new function for the tricalbins: mediating the fusion of the ER to the plasma membrane at contact sites. This proposed fusion is triggered by calcium influx via the stretch-gated channel Cch1 and is supported by the anoctamin Ist2.","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"22 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synaptotagmin-1 in phase: Condensate biology reveals new insights into the synaptic calcium sensor.","authors":"Johannes Vincent Tromm,Dragomir Milovanovic","doi":"10.1083/jcb.202408073","DOIUrl":"https://doi.org/10.1083/jcb.202408073","url":null,"abstract":"Two recent papers by Mehta et al. and Zhu et al. in this issue (https://doi.org/10.1083/jcb.202311191) discover that synaptotagmin-1, the primary calcium sensor at the synapse, forms biomolecular condensates, identifying a new layer of regulation in calcium-triggered synaptic vesicle exocytosis.","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"9 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Renwei Cai,Panzhu Bai,Meiling Quan,Yanyan Ding,Wenjie Wei,Chengmin Liu,Aihua Yang,Zailin Xiong,Guizhen Li,Binbin Li,Yi Deng,Ruijun Tian,Yan G Zhao,Chuanyue Wu,Ying Sun
{"title":"Migfilin promotes autophagic flux through direct interaction with SNAP29 and Vamp8.","authors":"Renwei Cai,Panzhu Bai,Meiling Quan,Yanyan Ding,Wenjie Wei,Chengmin Liu,Aihua Yang,Zailin Xiong,Guizhen Li,Binbin Li,Yi Deng,Ruijun Tian,Yan G Zhao,Chuanyue Wu,Ying Sun","doi":"10.1083/jcb.202312119","DOIUrl":"https://doi.org/10.1083/jcb.202312119","url":null,"abstract":"Autophagy plays a crucial role in cancer cell survival by facilitating the elimination of detrimental cellular components and the recycling of nutrients. Understanding the molecular regulation of autophagy is critical for developing interventional approaches for cancer therapy. In this study, we report that migfilin, a focal adhesion protein, plays a novel role in promoting autophagy by increasing autophagosome-lysosome fusion. We found that migfilin is associated with SNAP29 and Vamp8, thereby facilitating Stx17-SNAP29-Vamp8 SNARE complex assembly. Depletion of migfilin disrupted the formation of the SNAP29-mediated SNARE complex, which consequently blocked the autophagosome-lysosome fusion, ultimately suppressing cancer cell growth. Restoration of the SNARE complex formation rescued migfilin-deficiency-induced autophagic flux defects. Finally, we found depletion of migfilin inhibited cancer cell proliferation. SNARE complex reassembly successfully reversed migfilin-deficiency-induced inhibition of cancer cell growth. Taken together, our study uncovers a new function of migfilin as an autophagy-regulatory protein and suggests that targeting the migfilin-SNARE assembly could provide a promising therapeutic approach to alleviate cancer progression.","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"104 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142275162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A new player in the biogenesis of lysosome-related organelles.","authors":"Anbing Shi","doi":"10.1083/jcb.202407194","DOIUrl":"https://doi.org/10.1083/jcb.202407194","url":null,"abstract":"How are Rab GTPases regulated during lysosome-related organelle (LRO) biogenesis? Li et al. (https://doi.org/10.1083/jcb.202402016) identify LYSMD proteins as crucial activators of Rab32-family GTPases in LRO development, shedding light on the previously ambiguous mechanisms governing Rab functionality in this process.","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"52 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neil J Ball, Sujan Ghimire, Gautier Follain, Ada O Pajari, Diana Wurzinger, Monika Vaitkevičiūtė, Alana R Cowell, Bence Berki, Johanna Ivaska, Ilkka Paatero, Benjamin T Goult, Guillaume Jacquemet
{"title":"TLNRD1 is a CCM complex component and regulates endothelial barrier integrity.","authors":"Neil J Ball, Sujan Ghimire, Gautier Follain, Ada O Pajari, Diana Wurzinger, Monika Vaitkevičiūtė, Alana R Cowell, Bence Berki, Johanna Ivaska, Ilkka Paatero, Benjamin T Goult, Guillaume Jacquemet","doi":"10.1083/jcb.202310030","DOIUrl":"10.1083/jcb.202310030","url":null,"abstract":"<p><p>We previously identified talin rod domain-containing protein 1 (TLNRD1) as a potent actin-bundling protein in vitro. Here, we report that TLNRD1 is expressed in the vasculature in vivo. Its depletion leads to vascular abnormalities in vivo and modulation of endothelial cell monolayer integrity in vitro. We demonstrate that TLNRD1 is a component of the cerebral cavernous malformations (CCM) complex through its direct interaction with CCM2, which is mediated by a hydrophobic C-terminal helix in CCM2 that attaches to a hydrophobic groove on the four-helix domain of TLNRD1. Disruption of this binding interface leads to CCM2 and TLNRD1 accumulation in the nucleus and actin fibers. Our findings indicate that CCM2 controls TLNRD1 localization to the cytoplasm and inhibits its actin-bundling activity and that the CCM2-TLNRD1 interaction impacts endothelial actin stress fiber and focal adhesion formation. Based on these results, we propose a new pathway by which the CCM complex modulates the actin cytoskeleton and vascular integrity.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"223 9","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11252447/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141626834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intraflagellar transport speed is sensitive to genetic and mechanical perturbations to flagellar beating.","authors":"Sophie Gray, Cecile Fort, Richard John Wheeler","doi":"10.1083/jcb.202401154","DOIUrl":"10.1083/jcb.202401154","url":null,"abstract":"<p><p>Two sets of motor proteins underpin motile cilia/flagella function. The axoneme-associated inner and outer dynein arms drive sliding of adjacent axoneme microtubule doublets to periodically bend the flagellum for beating, while intraflagellar transport (IFT) kinesins and dyneins carry IFT trains bidirectionally along the axoneme. Despite assembling motile cilia and flagella, IFT train speeds have only previously been quantified in immobilized flagella-mechanical immobilization or genetic paralysis. This has limited investigation of the interaction between IFT and flagellar beating. Here, in uniflagellate Leishmania parasites, we use high-frequency, dual-color fluorescence microscopy to visualize IFT train movement in beating flagella. We discovered that adhesion of flagella to a microscope slide is detrimental, reducing IFT train speed and increasing train stalling. In flagella free to move, IFT train speed is not strongly dependent on flagella beat type; however, permanent disruption of flagella beating by deletion of genes necessary for formation or regulation of beating showed an inverse correlation of beat frequency and IFT train speed.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"223 9","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11148470/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141237704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}