Proceedings of the 2020 International Symposium on Physical Design最新文献

筛选
英文 中文
Session details: Keynote 3 会议细节:主题演讲3
Proceedings of the 2020 International Symposium on Physical Design Pub Date : 2020-03-20 DOI: 10.1145/3389223
I. Jiang
{"title":"Session details: Keynote 3","authors":"I. Jiang","doi":"10.1145/3389223","DOIUrl":"https://doi.org/10.1145/3389223","url":null,"abstract":"","PeriodicalId":151741,"journal":{"name":"Proceedings of the 2020 International Symposium on Physical Design","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133190764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Placement Optimization with Deep Reinforcement Learning 基于深度强化学习的布局优化
Proceedings of the 2020 International Symposium on Physical Design Pub Date : 2020-03-18 DOI: 10.1145/3372780.3378174
Anna Goldie, Azalia Mirhoseini
{"title":"Placement Optimization with Deep Reinforcement Learning","authors":"Anna Goldie, Azalia Mirhoseini","doi":"10.1145/3372780.3378174","DOIUrl":"https://doi.org/10.1145/3372780.3378174","url":null,"abstract":"Placement Optimization is an important problem in systems and chip design, which consists of mapping the nodes of a graph onto a limited set of resources to optimize for an objective, subject to constraints. In this paper, we start by motivating reinforcement learning as a solution to the placement problem. We then give an overview of what deep reinforcement learning is. We next formulate the placement problem as a reinforcement learning problem, and show how this problem can be solved with policy gradient optimization. Finally, we describe lessons we have learned from training deep reinforcement learning policies across a variety of placement optimization problems.","PeriodicalId":151741,"journal":{"name":"Proceedings of the 2020 International Symposium on Physical Design","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133794153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 32
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信