Placement Optimization with Deep Reinforcement Learning

Anna Goldie, Azalia Mirhoseini
{"title":"Placement Optimization with Deep Reinforcement Learning","authors":"Anna Goldie, Azalia Mirhoseini","doi":"10.1145/3372780.3378174","DOIUrl":null,"url":null,"abstract":"Placement Optimization is an important problem in systems and chip design, which consists of mapping the nodes of a graph onto a limited set of resources to optimize for an objective, subject to constraints. In this paper, we start by motivating reinforcement learning as a solution to the placement problem. We then give an overview of what deep reinforcement learning is. We next formulate the placement problem as a reinforcement learning problem, and show how this problem can be solved with policy gradient optimization. Finally, we describe lessons we have learned from training deep reinforcement learning policies across a variety of placement optimization problems.","PeriodicalId":151741,"journal":{"name":"Proceedings of the 2020 International Symposium on Physical Design","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 International Symposium on Physical Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3372780.3378174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Placement Optimization is an important problem in systems and chip design, which consists of mapping the nodes of a graph onto a limited set of resources to optimize for an objective, subject to constraints. In this paper, we start by motivating reinforcement learning as a solution to the placement problem. We then give an overview of what deep reinforcement learning is. We next formulate the placement problem as a reinforcement learning problem, and show how this problem can be solved with policy gradient optimization. Finally, we describe lessons we have learned from training deep reinforcement learning policies across a variety of placement optimization problems.
基于深度强化学习的布局优化
布局优化是系统和芯片设计中的一个重要问题,它包括将图的节点映射到有限的资源集上,以在约束条件下为目标进行优化。在本文中,我们首先将激励强化学习作为放置问题的解决方案。然后我们概述了什么是深度强化学习。接下来,我们将放置问题表述为一个强化学习问题,并展示如何使用策略梯度优化来解决这个问题。最后,我们描述了我们从各种布局优化问题中训练深度强化学习策略中学到的经验教训。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信