{"title":"Harnessing the innate immune system by revolutionizing macrophage-mediated cancer immunotherapy","authors":"Gayatri Reghu, Praveen Kumar Vemula, Sarita Ganapathy Bhat, Sreeja Narayanan","doi":"10.1007/s12038-024-00441-y","DOIUrl":"https://doi.org/10.1007/s12038-024-00441-y","url":null,"abstract":"<p>Immunotherapy is a promising and safer alternative to conventional cancer therapies. It involves adaptive T-cell therapy, cancer vaccines, monoclonal antibodies, immune checkpoint blockade (ICB), and chimeric antigen receptor (CAR) based therapies. However, most of these modalities encounter restrictions in solid tumours owing to a dense, highly hypoxic and immune-suppressive microenvironment as well as the heterogeneity of tumour antigens. The elevated intra-tumoural pressure and mutational rates within fast-growing solid tumours present challenges in efficient drug targeting and delivery. The tumour microenvironment is a dynamic niche infiltrated by a variety of immune cells, most of which are macrophages. Since they form a part of the innate immune system, targeting macrophages has become a plausible immunotherapeutic approach. In this review, we discuss several versatile approaches (both at pre-clinical and clinical stages) such as the direct killing of tumour-associated macrophages, reprogramming pro-tumour macrophages to anti-tumour phenotypes, inhibition of macrophage recruitment into the tumour microenvironment, novel CAR macrophages, and genetically engineered macrophages that have been devised thus far. These strategies comprise a strong and adaptable macrophage-toolkit in the ongoing fight against cancer and by understanding their significance, we may unlock the full potential of these immune cells in cancer therapy.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"25 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141257914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The first embryo, the origin of cancer and animal phylogeny. III. The totipotency as revealed by morphogenesis and the neoplasia controlled by cellular differentiation","authors":"Jaime Cofre","doi":"10.1007/s12038-024-00445-8","DOIUrl":"https://doi.org/10.1007/s12038-024-00445-8","url":null,"abstract":"<p>We have extensively described that the neoplastic process (NP) has deep evolutionary roots and we have made specific predictions about the connection between cancer and the formation of the first embryo, which allowed for the evolutionary radiation of metazoans. My main hypothesis is that the NP is at the heart of cellular mechanisms responsible for animal morphogenesis, and given its embryological basis, also at the center of cell differentiation—one of the most interesting and relevant aspects of embryogenesis. In this article, I take forward the idea of the role of physics in the modeling of the neoplastic functional module (NFM) and its contribution to morphogenesis to reveal the totipotency of the zygote. In my consideration of these arguments, I examine mechanical and biophysical clues and their intimate connection with cellular differentiation. I expound on how cancer biology is perfectly intertwined with embryonic differentiation and why it is considered a disease of cell differentiation. The neoplasia is controlled by textural gradients that lead to cell differentiation within the embryo. Thus, the embryo would be a benign tumor. Finally, inspired by evolutionary history and by what the nervous system represents for current biology and based on the impressive nervous system of ctenophores as seen in fossil records, I propose a hypothesis with physical foundations (mechanical morphogenesis) for the formation of a preneural pattern of the nervous system of the first animal embryo.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"43 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141259795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K Supriya, Nagappa Karabasanavar, C B Madhavaprasad, G K Sivaraman, P S Girish, Prashantkumar Waghe, A M Kotresh, Mohamed Nadeem Fairoze
{"title":"Milk supply chain as a reservoir of antimicrobial-resistant Staphylococcus species","authors":"K Supriya, Nagappa Karabasanavar, C B Madhavaprasad, G K Sivaraman, P S Girish, Prashantkumar Waghe, A M Kotresh, Mohamed Nadeem Fairoze","doi":"10.1007/s12038-024-00422-1","DOIUrl":"https://doi.org/10.1007/s12038-024-00422-1","url":null,"abstract":"<p>Milk is a source of essential nutrients, but food safety across the milk supply chain has emerged as an integral part of food trade. Of the several food safety hazards, antimicrobial-resistant <i>Staphylococcus</i> species have emerged as one of the major microbial hazards with significant public health concerns. The present cross-sectional study was undertaken with the objective to isolate <i>Staphylococcus</i> species from the milk supply chain, characterize isolates for antimicrobial resistance, and trace the origin of isolates using molecular techniques. Samples collected from the formal and informal milk supply chains showed prevalence of <i>Staphylococcus</i> species of 4.3% (<i>n</i>=720); isolates were identified as coagulase-positive (<i>S. aureus</i> 67.7% and <i>S. intermedius</i> 6.4%) and coagulase-negative (<i>S. lentus</i> 9.6%, <i>S. sciuri</i> 3.2%, <i>S. xylosus</i> 3.2%, <i>S. schleiferi</i> 3.2%, <i>S. felis</i> 3.2%, and <i>S. gallinarum</i> 3.2%) species. <i>Staphylococcus</i> isolates showed antimicrobial resistance to methicillin (32.2%), β-lactam (41.9%), and macrolide-lincosamide-streptogramin B (3.2%). <i>Staphylococcus</i> isolates phenotypically resistant to methicillin also carried the <i>mec</i>A gene and displayed diverse pulsed field gel electrophoresis (PFGE) profiles, indicating their diverse origins in the milk supply chain. Based on the similarity of PFGE profile, the origin of one of the <i>Staphylococcus</i> isolates was traced to the soil in contact with milch cows. The findings of this study highlight the need for more comprehensive microbial risk analysis studies across the milk supply chain, capacity building, creation of awareness among stakeholders about the judicious use of antimicrobials, and protection of public health using a One-Health approach.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"19 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141151706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yusuke Yamada, Kuniaki Suzuki, Hana Yanagishita, Ko Noguchi
{"title":"Roles of mitochondrial alternative oxidase in photosynthetic electron transport in illuminated leaves of Arabidopsis thaliana at low temperature","authors":"Yusuke Yamada, Kuniaki Suzuki, Hana Yanagishita, Ko Noguchi","doi":"10.1007/s12038-024-00446-7","DOIUrl":"https://doi.org/10.1007/s12038-024-00446-7","url":null,"abstract":"<p>ATP-uncoupling alternative oxidase (AOX) in the plant respiratory chain is often induced under stress conditions such as low temperature (LT). The importance of AOX in photosynthesis has been examined, and leaves having larger amounts of AOX tended to show larger decrease in photosynthetic electron transport rate (ETR) by AOX inhibition. However, the details were not clarified. Here, we used three ecotypes of <i>Arabidopsis thaliana</i> which differed in AOX amounts and their responses to LT, and examined whether AOX amount was related to the degree of decrease in ETR by AOX inhibition. In Tiv-0, which originates from a warmer site, grown at high temperature (HT), AOX inhibition decreased ETR, but not in the other ecotypes. LT treatment significantly increased ETR and AOX, especially in Bur-0, but AOX inhibition did not decrease ETR in LT plants of any ecotype. AOX inhibition significantly increased the non-regulated energy dissipation in photosystem II (PSII), Y(NO), and decreased the maximal quantum yield of PSII, <i>F</i><sub>v</sub>/<i>F</i><sub>m</sub>, especially in LT plants. Since AOX inhibition did not affect the parameters of PSI, AOX inhibition may directly affect the reaction center of PSII in LT plants.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"308 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141151764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gunjan Purohit, Akila Ramesh, Anant B Patel, Jyotsna Dhawan
{"title":"NMR-based comparative metabolomics of quiescent muscle cells","authors":"Gunjan Purohit, Akila Ramesh, Anant B Patel, Jyotsna Dhawan","doi":"10.1007/s12038-024-00442-x","DOIUrl":"https://doi.org/10.1007/s12038-024-00442-x","url":null,"abstract":"<p>Adult muscle tissue largely comprised of differentiated myofibers also harbors quiescent muscle-resident stem cells (MuSCs) that are responsible for its maintenance, repair and regeneration. Emerging evidence suggests that quiescent MuSCs exhibit a specific metabolic state, which is regulated during physiological and pathological alterations. However, a detailed understanding of the metabolic state of quiescent MuSCs and its alteration during activation and repair is lacking. Direct profiling of MuSCs <i>in vivo</i> is challenging because the cells are rare and dispersed, while isolation and enrichment leads to their activation and loss of quiescence. In this study, we employed <sup>1</sup>H-nuclear magnetic resonance<b> (</b>NMR) spectroscopy to profile metabolites in an established culture model of quiescent MuSC-derived myoblasts and compared with activated, proliferative and differentiated muscle cells to determine the state-specific metabolome. We report that the proliferating and differentiated cells are highly enriched in metabolites involved in energy generation, the quiescent state is enriched in metabolites related to phospholipid catabolism (glycerophosphocholine and choline) and depleted for phosphocholine which is enriched in proliferating cells. We propose that the ratio of these metabolites may be useful as a biomarker of MuSC quiescence.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"68 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141154000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intrinsic disorder in flaviviral capsid proteins and its role in pathogenesis","authors":"Anirudh Sundar, Pavithra Umashankar, Priyanka Sankar, Kavitha Ramasamy, Sangita Venkataraman","doi":"10.1007/s12038-024-00439-6","DOIUrl":"https://doi.org/10.1007/s12038-024-00439-6","url":null,"abstract":"<p>A high level of disorder in many viral proteins is a direct consequence of their small genomes, which makes interaction with multiple binding partners a necessity for infection and pathogenicity. A segment of the flaviviral capsid protein (C), also known as the molecular recognition feature (MoRF), undergoes a disorder-to-order transition upon binding to several protein partners. To understand their role in pathogenesis, MoRFs were identified and their occurrence across different flaviviral capsids were studied. Despite lack of sequence similarities, docking studies of Cs with the host proteins indicate conserved interactions involving MoRFs across members of phylogenetic subclades. Additionally, it was observed from the protein–protein networks that some MoRFs preferentially bind proteins that are involved in specialized functions such as ribosome biogenesis. The findings point to the importance of MoRFs in the flaviviral life cycle, with important consequences for disease progression and suppression of the host immune system. Potentially, they might have impacted the way flaviviruses evolved to infect varied hosts using multiple vectors.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"207 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141061386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Systems biology of plant metabolic interactions","authors":"Devlina Sarkar, Sudip Kundu","doi":"10.1007/s12038-023-00416-5","DOIUrl":"https://doi.org/10.1007/s12038-023-00416-5","url":null,"abstract":"<p>Metabolism is the key cellular process of plant physiology. Understanding metabolism and its dynamical behavior under different conditions may help plant biotechnologists to design new cultivars with desired goals. Computational systems biochemistry and incorporation of different omics data unravelled active metabolism and its variations in plants. In this review, we mainly focus on the basics of flux balance analysis (FBA), elementary flux mode analysis (EFMA), and some advanced computational tools. We describe some important results that were obtained using these tools. Limitations and challenges are also discussed.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"77 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140883385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Josepheena Joseph, Sanjib Bal Samant, Kapuganti Jagadis Gupta
{"title":"Mitochondrial alternative oxidase pathway helps in nitro-oxidative stress tolerance in germinating chickpea","authors":"Josepheena Joseph, Sanjib Bal Samant, Kapuganti Jagadis Gupta","doi":"10.1007/s12038-024-00424-z","DOIUrl":"https://doi.org/10.1007/s12038-024-00424-z","url":null,"abstract":"<p>Mitochondrial alternative oxidase (AOX) is an important protein that can help in regulating reactive oxygen species and nitric oxide in plants. The role of AOX in regulation of nitro-oxidative stress in chickpea is not known. Using germinating chickpea as a model system, we investigated the role of AOX in nitro-oxidative stress tolerance. NaCl treatment was used as an inducer of nitro-oxidative stress. Treatment of germinating seeds with 150 mM NaCl led to reduced germination and radicle growth. The AOX inhibitor SHAM caused further inhibition of germination, and the AOX inducer pyruvate improved growth of the radicle under NaCl stress. Isolated mitochondria from germinated seeds under salt stress not only increased AOX capacity but also enhanced AOX protein expression. Measurement of superoxide levels revealed that AOX inhibition by SHAM can enhance superoxide levels, whereas the AOX inducer pyruvate reduced superoxide levels. Measurement of NO by gas phase chemiluminescence revealed enhanced NO generation in response to NaCl treatment. Upon NaCl treatment there was enhanced tyrosine nitration, which is an indicator of nitrosative stress response. Taken together, our results revealed that AOX induced under salinity stress in germinating chickpea can help in mitigating nitro-oxidative stress, thereby improving germination.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"26 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140883317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multiple anomalies in wild-caught fish species Curmuca barb Hypselobarbus curmuca (Hamilton 1807) (Cyprinidae: Cypriniformes) from the Western Ghats of India","authors":"T M Jeevan, Dayal Devadas, A K Jaiswar","doi":"10.1007/s12038-024-00419-w","DOIUrl":"https://doi.org/10.1007/s12038-024-00419-w","url":null,"abstract":"<p>Fish of the genus <i>Hypselobarbus</i> (Bleeker 1860) are widely dispersed in the rivers of the Western Ghats in India and endemic to southern Indian peninsular freshwaters. These are small- to medium-sized fishes of the family Cyprinidae. Although fish with deformed bodies or body parts are rare in natural waters, this article deals with four abnormal specimens of <i>Hypselobarbus curmuca</i> (Hamilton 1807) collected from the rivers Tunga, Bhadra, and Kali during 2022. The abnormalities observed in four different individuals are pughead deformity, pelvic fin deformity, pectoral fin deformity, and enlarged scales. The morphological comparison of normal individuals of <i>Hypselobarbus curmuca</i> (Hamilton 1807) with abnormal specimens revealed variation. Using the <i>MT-COI</i> gene, species identity was confirmed and the mean genetic divergence between the normal and abnormal specimens was estimated to be less than 1%.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"42 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140883559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SDF-1 promotes metastasis of NSCLC by enhancing chemoattraction of megakaryocytes through the PI3K/Akt signaling pathway","authors":"Yiguo Ai, Changhong Wan, Zijian Chen, Yansheng Wang, Wen Zhao, Weizhe Huang","doi":"10.1007/s12038-023-00393-9","DOIUrl":"https://doi.org/10.1007/s12038-023-00393-9","url":null,"abstract":"<p>Lung cancer (LC) is the leading cause of cancer-associated deaths worldwide, among which non-small-cell lung cancer (NSCLC) accounts for 80%. Stromal cell-derived factor-1 (SDF-1) inhibition results in a significant depletion of NSCLC metastasis. Additionally, SDF-1 is the only natural chemokine known to bind and activate the receptor CXCR4. Thus, we attempted to clarify the molecular mechanism of SDF-1 underlying NSCLC progression. Transwell migration, adhesion, and G-LISA assays were used to assess megakaryocytic chemotaxis <i>in vitro</i> and <i>in vivo</i> in terms of megakaryocytic migration, adherence, and RhoA activation, respectively. Western blotting was used to assess PI3K/Akt-associated protein abundances in MEG-01 cells and primary megakaryocytes under the indicated treatment. A hematology analyzer and flow cytometry were used to assess platelet counts in peripheral blood and newly formed platelet counts in Lewis LC mice under different treatments. Immunochemistry and flow cytometry were used to measure CD41+ megakaryocyte numbers in Lewis LC mouse tissue under different treatments. ELISA was used to measure serum TPO levels, and H&E staining was used to detect NSCLC metastasis. SDF-1 receptor knockdown suppressed megakaryocytic chemotaxis in Lewis LC mice. SDF-1 receptor inhibition suppressed megakaryocytic chemotaxis via the PI3K/Akt pathway. SDF-1 receptor knockdown suppressed CD41+ megakaryocyte numbers <i>in vivo</i> through PI3K/Akt signaling. SDF-1 receptor inhibition suppressed CD41+ megakaryocytes to hinder NSCLC metastasis. SDF-1 facilitates NSCLC metastasis by enhancing the chemoattraction of megakaryocytes via the PI3K/Akt signaling pathway, which may provide a potential new direction for seeking therapeutic plans for NSCLC.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"91 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140883249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}