Effect of exosomes derived from induced and human adipose tissue-derived mesenchymal stem cells on human cancer cells.

IF 2.1 4区 生物学 Q2 BIOLOGY
Journal of Biosciences Pub Date : 2025-01-01
Razan Aldiqs, Sura Nashwan, Mohammad A Ismail, Tareq Saleh, Raghda Barham, Malik Zihlif, Nidaa A Ababneh
{"title":"Effect of exosomes derived from induced and human adipose tissue-derived mesenchymal stem cells on human cancer cells.","authors":"Razan Aldiqs, Sura Nashwan, Mohammad A Ismail, Tareq Saleh, Raghda Barham, Malik Zihlif, Nidaa A Ababneh","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Exosomes (Exos) derived from mesenchymal stem cells (MSCs) are known to influence cancer cell behavior; however, the clinical use of MSCs is limited due to the gradual loss of their differentiation potential with continuous passaging. Induced mesenchymal stem cells (iMSCs) have emerged as a promising alternative source, but the effects of Exos derived from iMSCs (iMSC-Exos) on cancer cells remain incompletely understood. This study aims to compare the effects of iMSC-Exos with ADMSC-Exos derived from adipose tissue-derived mesenchymal stem cells (ADMSCs) on the viability, invasion, and migration of breast (MCF7) and lung (A549) cancer cells. Conditioned media from iMSCs and ADMSCs were collected for isolation and characterization of Exos. MCF7 and A549 cell lines were treated with iMSC- and ADMSC-Exos, and Exos uptake, cell viability, migration, senescence, and expression of <i>BAX</i> and <i>BCL-2</i> genes were evaluated. iMSCand ADMSC-Exos were successfully internalized into cancer cells, with a higher efficiency of ADMSC-Exos uptake in MCF7 cells. Cell viability decreased and migration increased in both cancer cell lines upon treatment. <i>BAX</i> expression was significantly reduced in MCF7 cells following ADMSC-Exos treatment and in A549 cells after iMSC-Exos treatment. In contrast, <i>BCL-2</i> expression was significantly reduced in MCF7 cells treated with both iMSC- and ADMSC-Exos, while it significantly increased in A549 cells after ADMSC-Exos treatment. A549 lung cancer cells showed a higher level of senescence than MCF7 breast cancer cells, particularly when treated with iMSC-Exos. Minimal overall differences were observed in viability, apoptosis, and migration assays between iMSC- and ADMSC-Exos in MCF7 and A549 cells. However, significant differences were observed in the senescence and expression of <i>BAX</i> and <i>BCL-2</i> genes across cancer cell lines. These findings highlight the importance of further investigation into the distinct effects of iMSC- and ADMSC-Exos on cancer cell biology.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"50 ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biosciences","FirstCategoryId":"99","ListUrlMain":"","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Exosomes (Exos) derived from mesenchymal stem cells (MSCs) are known to influence cancer cell behavior; however, the clinical use of MSCs is limited due to the gradual loss of their differentiation potential with continuous passaging. Induced mesenchymal stem cells (iMSCs) have emerged as a promising alternative source, but the effects of Exos derived from iMSCs (iMSC-Exos) on cancer cells remain incompletely understood. This study aims to compare the effects of iMSC-Exos with ADMSC-Exos derived from adipose tissue-derived mesenchymal stem cells (ADMSCs) on the viability, invasion, and migration of breast (MCF7) and lung (A549) cancer cells. Conditioned media from iMSCs and ADMSCs were collected for isolation and characterization of Exos. MCF7 and A549 cell lines were treated with iMSC- and ADMSC-Exos, and Exos uptake, cell viability, migration, senescence, and expression of BAX and BCL-2 genes were evaluated. iMSCand ADMSC-Exos were successfully internalized into cancer cells, with a higher efficiency of ADMSC-Exos uptake in MCF7 cells. Cell viability decreased and migration increased in both cancer cell lines upon treatment. BAX expression was significantly reduced in MCF7 cells following ADMSC-Exos treatment and in A549 cells after iMSC-Exos treatment. In contrast, BCL-2 expression was significantly reduced in MCF7 cells treated with both iMSC- and ADMSC-Exos, while it significantly increased in A549 cells after ADMSC-Exos treatment. A549 lung cancer cells showed a higher level of senescence than MCF7 breast cancer cells, particularly when treated with iMSC-Exos. Minimal overall differences were observed in viability, apoptosis, and migration assays between iMSC- and ADMSC-Exos in MCF7 and A549 cells. However, significant differences were observed in the senescence and expression of BAX and BCL-2 genes across cancer cell lines. These findings highlight the importance of further investigation into the distinct effects of iMSC- and ADMSC-Exos on cancer cell biology.

诱导和人脂肪组织来源的间充质干细胞外泌体对人癌细胞的影响。
来自间充质干细胞(MSCs)的外泌体(Exos)已知会影响癌细胞的行为;然而,MSCs的临床应用受到限制,因为随着不断传代,它们的分化潜力逐渐丧失。诱导间充质干细胞(iMSCs)已成为一种有前景的替代来源,但iMSCs衍生的Exos (iMSC-Exos)对癌细胞的影响尚不完全清楚。本研究旨在比较iMSC-Exos与来源于脂肪组织源性间充质干细胞(ADMSCs)的ADMSC-Exos对乳腺癌(MCF7)和肺癌(A549)癌细胞活力、侵袭和迁移的影响。收集iMSCs和ADMSCs的条件培养基,分离和鉴定Exos。用iMSC-和ADMSC-Exos处理MCF7和A549细胞株,评估Exos摄取、细胞活力、迁移、衰老以及BAX和BCL-2基因的表达。imscc和ADMSC-Exos成功内化到癌细胞中,在MCF7细胞中ADMSC-Exos的摄取效率更高。在治疗后,两种癌细胞系的细胞活力下降,迁移增加。ADMSC-Exos处理后的MCF7细胞和iMSC-Exos处理后的A549细胞中BAX的表达显著降低。相比之下,在iMSC-和ADMSC-Exos处理的MCF7细胞中,BCL-2的表达显著降低,而在ADMSC-Exos处理的A549细胞中,BCL-2的表达显著升高。A549肺癌细胞比MCF7乳腺癌细胞表现出更高的衰老水平,特别是当用iMSC-Exos处理时。在MCF7和A549细胞中,iMSC-和ADMSC-Exos在活力、凋亡和迁移试验中观察到最小的总体差异。然而,在不同的癌细胞系中,BAX和BCL-2基因的衰老和表达存在显著差异。这些发现强调了进一步研究iMSC-和ADMSC-Exos对癌细胞生物学的不同影响的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biosciences
Journal of Biosciences 生物-生物学
CiteScore
5.80
自引率
0.00%
发文量
83
审稿时长
3 months
期刊介绍: The Journal of Biosciences is a quarterly journal published by the Indian Academy of Sciences, Bangalore. It covers all areas of Biology and is the premier journal in the country within its scope. It is indexed in Current Contents and other standard Biological and Medical databases. The Journal of Biosciences began in 1934 as the Proceedings of the Indian Academy of Sciences (Section B). This continued until 1978 when it was split into three parts : Proceedings-Animal Sciences, Proceedings-Plant Sciences and Proceedings-Experimental Biology. Proceedings-Experimental Biology was renamed Journal of Biosciences in 1979; and in 1991, Proceedings-Animal Sciences and Proceedings-Plant Sciences merged with it.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信