{"title":"Evolutionary duplication of the leishmanial adaptor protein α-SNAP plays a role in its pathogenicity.","authors":"Shankari Prasad Datta, Chinmoy Sankar Dey","doi":"10.1016/j.jbc.2025.108427","DOIUrl":"https://doi.org/10.1016/j.jbc.2025.108427","url":null,"abstract":"<p><p>Essential-gene duplication during evolution promotes specialized functions beyond the typical role. Our in-silico study unveiled two α-SNAP paralogs in Leishmania, a crucial component that, along with NSF, triggers disassembly of the cis-SNARE complex, formed during vesicle fusion with target membranes. While multiple α-SNAPs are common in many flagellated protists, including the trypanosomatids, they are unusual among other eukaryotes. This study explores the evolutionary and functional relevance of α-SNAP gene duplication in Leishmania donovani, emphasizing both subfunctionalization and neofunctionalization. We discovered that Leishmania donovani α-SNAP (Ldα-SNAP) genes are transcribed in promastigote and amastigote stages, indicating they are not pseudogenes. Although the two paralogs share essential residues and structural features, only Ldα-SNAP<sub>1660</sub> (Ldα-SNAP1) can effectively substitute the function of its yeast counterpart, while Ldα-SNAP<sub>3040</sub> (Ldα-SNAP2) cannot. This functional difference is attributed to a replacement of alanine with phosphorylatable-serine in Ldα-SNAP1 during evolution from the most common ancestral ortholog. This modification is rarely observed in corresponding orthologs of other trypanosomatids. Incidentally, Ldα-SNAP paralogs exhibit differential localization in the ER and flagellar pocket. However, both paralogs, either actively or passively, regulate the secretion of exosomes and PM blebs, containing the virulence protein GP63. This indicates functional division and their indirect participation in host's macrophage inactivation. Moreover, a small fraction of Ldα-SNAP1's presence in flagellum hints at a potential role in sensing environmental cues and aiding parasite's attachment to the sandfly's hindgut. Our findings underscore that duplicated Ldα-SNAPs have retained ancestral functions through subfunctionalization, and subsequently, they acquired parasite-specific neofunction(s) through accumulation of natural mutation(s).</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108427"},"PeriodicalIF":4.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143674025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C K Matthew Heng, Ilona Darlyuk-Saadon, Wupeng Liao, Manju P Mohanam, Phyllis X L Gan, Nechama Gilad, Christabel C M Y Chan, Inbar Plaschkes, W S Fred Wong, David Engelberg
{"title":"A combination of alveolar type 2-specific p38α activation with a high-fat diet increases inflammatory markers in mouse lungs.","authors":"C K Matthew Heng, Ilona Darlyuk-Saadon, Wupeng Liao, Manju P Mohanam, Phyllis X L Gan, Nechama Gilad, Christabel C M Y Chan, Inbar Plaschkes, W S Fred Wong, David Engelberg","doi":"10.1016/j.jbc.2025.108425","DOIUrl":"https://doi.org/10.1016/j.jbc.2025.108425","url":null,"abstract":"<p><p>Chronic respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD) afflict millions of individuals globally and are significant sources of disease mortality. While the molecular mechanisms underlying such diseases are unclear, environmental and social factors, such as cigarette smoke and obesity, increase the risk of disease development. Yet not all smokers or obese individuals will develop chronic respiratory diseases. The MAPK p38α is abnormally active in such maladies, but its contribution, if any, to disease aetiology is unknown. To assess whether p38α activation per se in the lung could impose disease symptoms, we generated a transgenic mouse model allowing controllable expression of an intrinsically active variant, p38α<sup>D176A+F327S</sup>, specifically in lung alveolar type 2 (AT2) pneumocytes. Sustained expression of p38α<sup>D176A+F327S</sup> did not appear to induce obvious pathological outcomes or to exacerbate inflammatory outcomes in mice challenged with common respiratory disease triggers. However, mice expressing p38α<sup>D176A+F327S</sup> in AT2 cells and fed with a high-fat diet (HFD) exhibited increased numbers of airway eosinophils and lymphocytes, upregulated levels of pro-inflammatory cytokines and chemokines including interleukin-1β and eotaxin, as well as a reduction in levels of leptin and adiponectin within the lung. Neither HFD nor p38α<sup>D176A+F327S</sup> alone induced such outcomes. Perhaps in obese individuals with associated respiratory diseases, elevated p38α activity which happens to occur is the factor that promotes their development.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108425"},"PeriodicalIF":4.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143673964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shun Saito, Koji Nishiyama, Hanako Bai, Masashi Takahashi, Manabu Kawahara
{"title":"Polarization-independent regulation of the subcellular localization of Yes-associated protein 1 during preimplantation development.","authors":"Shun Saito, Koji Nishiyama, Hanako Bai, Masashi Takahashi, Manabu Kawahara","doi":"10.1016/j.jbc.2025.108429","DOIUrl":"https://doi.org/10.1016/j.jbc.2025.108429","url":null,"abstract":"<p><p>Cell polarization is a crucial developmental process that determines cell differentiation in mouse embryos. During this process, an extensively expressed transcriptional regulator, Yes-associated protein 1 (YAP1), is localized either to the cytoplasm or nucleus via HIPPO signaling. In mouse pre-morula embryos, YAP1 is present in the nuclei of all cells. Thereafter, YAP1 is distributed to the nuclei of outer cells or cytoplasm of inner cells, depending on the establishment of cell polarity and morula formation. However, the dynamics of YAP1 localization in other species, including ruminants, remain unclear. To gain an in-depth understanding of cell differentiation in mammalian embryos, we investigated YAP1 localization changes in bovine embryos. Unlike in mouse morulae, YAP1 displayed cytoplasmic localization in most cells, including the outer cells of bovine morulae, after the 32-cell stage. Next, we analyzed the relationship between cell polarity and nuclear localization of YAP1. Polarization of outer cells in the bovine morula began at the late 16-cell stage and was established by the late 32-cell stage, indicating that polarization preceded the nuclear localization of YAP1 in bovine embryos. To explore the regulation of YAP1 localization in bovine morula, we analyzed zona-free embryos and found that the presence of the zona pellucida significantly enhanced YAP1 cytoplasmic localization. Moreover, we observed ectopic expression of SOX2 in zona-free blastocysts, which indicated that cytoplasmic localization of YAP1 was associated with the suppression of pluripotency in the trophectoderm. These findings provide valuable insights into the molecular mechanisms underlying the first cell differentiation in mammalian embryos.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108429"},"PeriodicalIF":4.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143674027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Robert C Cail, Faviolla A Baez-Cruz, Donald A Winkelmann, Yale E Goldman, E Michael Ostap
{"title":"Dynamics of β-cardiac myosin between the super-relaxed and disordered-relaxed states.","authors":"Robert C Cail, Faviolla A Baez-Cruz, Donald A Winkelmann, Yale E Goldman, E Michael Ostap","doi":"10.1016/j.jbc.2025.108412","DOIUrl":"10.1016/j.jbc.2025.108412","url":null,"abstract":"<p><p>The super-relaxed (SRX) state of myosin ATPase activity is critical for striated muscle function, and its dysregulation is linked to cardiomyopathies. It is unclear whether the SRX state exchanges readily with the disordered-relaxed (DRX) state, and whether the SRX state directly corresponds to the folded back interacting-head motif (IHM). Using recombinant β-cardiac heavy meromyosin (HMM) and subfragment 1 (S1), which cannot form the IHM, we show that the SRX and DRX populations transition at a rate substantially faster than the ATP turnover rate, dependent on myosin head-tail interactions. Some mutations which cause hypertrophic (HCM) or dilated (DCM) cardiomyopathies alter the SRX-DRX equilibrium, but not all mutations. The cardiac myosin inhibitor mavacamten slows nucleotide release by an equal factor for both HMM and S1, thus only indirectly influencing the occupancy time of the SRX state. These findings suggest that purified myosins undergo rapid switching between SRX and DRX states, refining our understanding of cardiomyopathy mechanisms.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108412"},"PeriodicalIF":4.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143673968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Morgan B Dwyer, Jiansong Luo, Tyson D Todd, Kendall J Blumer, Gregory G Tall, Philip B Wedegaertner
{"title":"The guanine nucleotide exchange factor Ric-8A regulates the sensitivity of constitutively active Gαq to the inhibitor YM-254890.","authors":"Morgan B Dwyer, Jiansong Luo, Tyson D Todd, Kendall J Blumer, Gregory G Tall, Philip B Wedegaertner","doi":"10.1016/j.jbc.2025.108426","DOIUrl":"https://doi.org/10.1016/j.jbc.2025.108426","url":null,"abstract":"<p><p>Heterotrimeric G proteins are stimulated under normal circumstances by G protein coupled receptors (GPCRs) to promote downstream intracellular signaling. Mutations can occur in αq at glutamine 209 (Q209) that cause constitutive, GPCR-independent signaling due to disruption of GTPase activity. Specifically, Q209L/P mutations are oncogenic drivers of uveal melanoma. YM-254890 (YM) has been shown to selectively inhibit both wildtype and constitutively active (CA) αqQ209L/P by preventing the release of GDP and exchange for GTP, thereby halting downstream signaling. Because αqQL/P are thought to be primarily GTP-bound and GTPase deficient, the current mechanistic understanding of YM inhibition needs further investigation to clarify how a GDP-dissociation inhibitor (GDI) could potently inhibit these oncogenic mutants. Here, we expand on the current knowledge of CA αq cellular regulation by demonstrating a direct role for the αq chaperone and guanine-nucleotide exchange factor (GEF) Ric-8A in YM sensitivity. Through signaling assays in RIC-8A knockout cells, we found that myristoylated αqQL/P mutants (αqAG-QL/P), previously demonstrated to be YM-resistant, became YM-sensitive, and this was reversed by reintroduction of Ric-8A. Additionally, αqQL demonstrated increased YM sensitivity in the absence of Ric-8A, which was directly altered by the reintroduction of Ric-8A. Pulldown and BRET assays with the RGS-homology domain of GRK2, which can only bind activated αq, further demonstrated that Ric-8A expression enhances activation of αq, its ability to bind effectors, and therefore its ability to signal. With the understanding of YM acting as a GDI, we propose that Ric-8A hinders YM inhibitory effects by promoting GTP-bound, activated αqQL/P.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108426"},"PeriodicalIF":4.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143674028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interaction between Ca<sub>V</sub>2.1 and Junctophilin3/4 depends on the II-III loop of Ca<sub>V</sub>2.1 and on the α-helical region of Junctophilin3/4.","authors":"Stefano Perni, Alexander Polster, Kurt G Beam","doi":"10.1016/j.jbc.2025.108424","DOIUrl":"https://doi.org/10.1016/j.jbc.2025.108424","url":null,"abstract":"<p><p>Neuronal Junctophilins (JPH3 and JPH4) form junctions between the endoplasmic reticulum (ER) and plasma membrane (PM) through their C-terminal transmembrane domain, which is embedded in the ER membrane, and N-terminal domain, which binds to the PM. JPHs also recruit and slow the inactivation of the voltage-gated Ca<sup>2+</sup> channel Ca<sub>V</sub>2.1. Here, we identified the domains responsible for Ca<sub>V</sub>2.1/JPH interactions by co-expressing the isolated GFP-tagged Ca<sub>V</sub>2.1 cytoplasmic domains with mCherry-tagged JPH3/4 in tsA201 cells. Among the Ca<sub>V</sub>2.1 domains, only the II-III loop colocalized with JPH3 and JPH4 as well as with the TM truncated JPH3-ΔTM and JPH4-ΔTM constructs, which cannot form ER-PM junctions. Further fragmentation of the II-III loop showed that both JPH-ΔTM constructs colocalized with the proximal half of the loop containing the synprint domain, known to bind presynaptic proteins, but only JPH4-ΔTM colocalized with the distal half and only JPH4 slowed the inactivation of a Ca<sub>V</sub>2.1 construct lacking most of the synprint region. JPH colocalization with the II-III loop persisted when JPH divergent and transmembrane domains were deleted but was lost when the α-helical domain was also removed. Swapping the α-helical domains between JPH3 and JPH4 led to a corresponding exchange in their ability to interact with the II-III loop distal segment. Thus, the α-helical domain appears necessary for JPH binding to the synprint-containing II-III loop half and for the differential binding of JPH3 and JPH4 to the loop distal half. Furthermore, the binding of JPH α-helical domain to the Ca<sub>V</sub>2.1 II-III loop is essential for slowing Ca<sub>V</sub>2.1 inactivation.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108424"},"PeriodicalIF":4.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143674026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Li, Zhucui Li, Jiekai Yin, Yinsheng Wang, Deyou Zheng, Ling Cai, Gang Greg Wang
{"title":"The Sotos syndrome gene Nsd1 safeguards developmental gene enhancers poised for transcription by maintaining the precise deposition of histone methylation.","authors":"Jie Li, Zhucui Li, Jiekai Yin, Yinsheng Wang, Deyou Zheng, Ling Cai, Gang Greg Wang","doi":"10.1016/j.jbc.2025.108423","DOIUrl":"https://doi.org/10.1016/j.jbc.2025.108423","url":null,"abstract":"<p><p>Germline haploinsufficiency of NSD1 is implicated as the etiology of Sotos syndrome; however, the underlying mechanism remains far from being clear. Here, we use mouse embryonic stem cell (mESC) differentiation as a model system to address this question. We found Nsd1 to be indispensable for the faithful differentiation of mESCs into three primary germ layers, particularly, various meso-endodermal cell lineages related to development of the heart and the skeletal system. Time-course transcriptomic profiling following the mESC differentiation revealed that Nsd1 not only facilitates the basal expression but also permits the differentiation-accompanied rapid induction of a suite of meso-endoderm lineage-specifying transcription factor (TF) genes such as T and Gata4. Mechanistically, Nsd1 directly occupies putative distal enhancers of the lineage TF genes under the pluripotent cell state, where it deposits H3K36me2 to antagonizes the excessive H3K27me3 and maintain the basal H3K27ac level, thereby safeguarding these gene enhancers at a primed state that responds readily to differentiation cues. In agreement, gene rescue assays using the Nsd1 knockout mESCs showed that the H3K36me2 catalysis by Nsd1 requires several functional modules within Nsd1 (namely, PHD1-4, PWWP2 and SET) to a similar degree. Disruption of either one of these Nsd1 modules severely abrogated H3K36me2 in mESCs and significantly impaired appropriate induction of developmental genes upon mESC differentiation. Altogether, our study provides novel molecular insight into how the NSD1 perturbation derails normal development and causes the disease.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108423"},"PeriodicalIF":4.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143674030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ATP synthesis of Enterococcus hirae V-ATPase driven by sodium motive force.","authors":"Akihiro Otomo, Lucy Gao Hui Zhu, Yasuko Okuni, Mayuko Yamamoto, Ryota Iino","doi":"10.1016/j.jbc.2025.108422","DOIUrl":"https://doi.org/10.1016/j.jbc.2025.108422","url":null,"abstract":"<p><p>V-ATPases generally function as ion pumps driven by ATP hydrolysis in the cell, but their capability of ATP synthesis remains largely unexplored. Here we show ATP synthesis of Na<sup>+</sup>-transporting Enterococcus hirae V-ATPase (EhV<sub>o</sub>V<sub>1</sub>) driven by electrochemical potential gradient of Na<sup>+</sup> across the membrane (sodium motive force, smf). We reconstituted EhV<sub>o</sub>V<sub>1</sub> into liposome and performed a luciferin/luciferase-based assay to analyze ATP synthesis quantitatively. Our result demonstrates that EhV<sub>o</sub>V<sub>1</sub> synthesizes ATP with a rate of 4.7 s<sup>-1</sup> under high smf (269.3 mV). The Michaelis constants for ADP (21 μM) and inorganic phosphate (2.1 mM) in ATP synthesis reaction were comparable to those for ATP synthases, suggesting similar substrate affinities among rotary ATPases regardless of their physiological functions. Both components of smf, Na<sup>+</sup> concentration gradient across the membrane (ΔpNa) and membrane potential (Δψ), contributed to ATP synthesis, with ΔpNa showing a slightly larger impact. At the equilibrium points where smf and Gibbs free energy of ATP synthesis are balanced, EhV<sub>o</sub>V<sub>1</sub> showed reversible reactions between ATP synthesis and hydrolysis. The obtained Na<sup>+</sup>/ATP ratio (3.2 ± 0.4) closely matched the value expected from the structural symmetry ratio between EhV<sub>o</sub> and EhV<sub>1</sub> (10/3 = 3.3), indicating tight coupling between ATP synthesis/hydrolysis and Na<sup>+</sup> transport. These results reveal inherent functional reversibility of EhV<sub>o</sub>V<sub>1</sub>. We propose that physiological function of EhV<sub>o</sub>V<sub>1</sub>in vivo is determined by relatively small smf against large Gibbs free energy of ATP synthesis, in addition to the absence of inhibitory mechanisms of ATP hydrolysis which are known for ATP synthases.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108422"},"PeriodicalIF":4.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143673967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yixuan Hu, Jin Bian, Weiwei Chen, Junfeng Shi, Xiaowei Wei, Yueyao Du, Wenwen Zhang
{"title":"Androgen receptor-induced lncRNA SOX2-OT promotes triple-negative breast cancer tumorigenesis via targeting miR-320a-5p/CCR5 axis.","authors":"Yixuan Hu, Jin Bian, Weiwei Chen, Junfeng Shi, Xiaowei Wei, Yueyao Du, Wenwen Zhang","doi":"10.1016/j.jbc.2025.108428","DOIUrl":"https://doi.org/10.1016/j.jbc.2025.108428","url":null,"abstract":"<p><p>Our previous study showed that androgen receptor (AR) promotes triple-negative breast cancer (TNBC) cells tumorigenesis, but the underlying mechanisms remain unclear. Herein, using microarray analysis of lncRNA expression profiles, we identified an AR-related lncRNA SOX2-OT in TNBC. We found that AR could promote TNBC tumorigenesis by acting as a transcription factor to activate the expression of SOX2-OT. Mechanistic analysis demonstrated that SOX2-OT serves as a molecular sponge for miR-320a-5p to regulate the expression of CCR5. In addition, SOX2-OT promotes TNBC cell proliferation and inhibits apoptosis in a miR-320a-5p-dependent manner. Using a xenograft mouse model, we found SOX2-OT/CCR5 axis could promote TNBC tumorigenesis in vivo. Importantly, the AR/SOX2-OT/miR-320a-5p/CCR5 axis is manifested in the tissues of 165 TNBC patients. Collectively, our results suggest that SOX2-OT can regulate AR-induced TNBC tumorigenesis through the miR-320a-5p/CCR5 signaling axis, and reveal the great potential of targeting SOX2-OT for the treatment of TNBC patients.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108428"},"PeriodicalIF":4.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143673966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optogenetic tools for inducing organelle membrane rupture.","authors":"Yuto Nagashima, Tomoya Eguchi, Ikuko Koyama-Honda, Noboru Mizushima","doi":"10.1016/j.jbc.2025.108421","DOIUrl":"https://doi.org/10.1016/j.jbc.2025.108421","url":null,"abstract":"<p><p>Disintegration of organelle membranes induces various cellular responses and has pathological consequences, including autoinflammatory diseases and neurodegeneration. Establishing methods to induce membrane rupture of specific organelles is essential to analyze the downstream effects of membrane rupture; however, the spatiotemporal induction of organelle membrane rupture remains challenging. Here, we develop a series of optogenetic tools to induce organelle membrane rupture by using engineered Bcl-2-associated X protein (BAX), which primarily functions to form membrane pores in the outer mitochondrial membrane (OMM) during apoptosis. When BAX is forced to target mitochondria, lysosomes, or the endoplasmic reticulum (ER) by replacing its C-terminal transmembrane domain (TMD) with organelle-targeting sequences, the BAX mutants rupture their targeted membranes. To regulate the activity of organelle-targeted BAX, the photosensitive light-oxygen-voltage-sensing 2 (LOV2) domain is fused to the N-terminus of BAX. The resulting LOV2-BAX fusion protein exhibits blue light-dependent membrane-rupture activity on various organelles, including mitochondria, the ER, and lysosomes. Thus, LOV2-BAX enables spatiotemporal induction of membrane rupture across a broad range of organelles, expanding research opportunities on the consequences of organelle membrane disruption.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108421"},"PeriodicalIF":4.0,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143669897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}