Keito Makise, T. Takei, N. Saito, Junichi Yamanaka, N. Kumada, Hiroyoshi Mori, Nobuki Itoi, Toshiki Goto
{"title":"Crystal structure and ion-exchange property of a lepidocrocite-like sodium titanate","authors":"Keito Makise, T. Takei, N. Saito, Junichi Yamanaka, N. Kumada, Hiroyoshi Mori, Nobuki Itoi, Toshiki Goto","doi":"10.1080/21870764.2023.2173849","DOIUrl":"https://doi.org/10.1080/21870764.2023.2173849","url":null,"abstract":"ABSTRACT A lepidocrocite-like potassium titanate, (Kx(LixTi1-x)O2; Lss) with a layered structure can provide a reactive interlayer space for soft-chemical reaction such as ion-exchange or intercalation and the hydrated sodium derivative (Lss-Na) was obtained by an ion-exchange reaction. The crystal structures of the hydrated and dehydrated Lss-Na were refined by using synchrotron powder X-ray diffraction data. Two steps of dehydrated processes for the Lss-Na were observed by in-situ synchrotron powder X-ray diffraction. The ion-exchange property for Lss-Na was superior to those for Lss and Lss-H and was corelated with the effective basal space which was expanded by formation of two layers of water molecules.","PeriodicalId":15130,"journal":{"name":"Journal of Asian Ceramic Societies","volume":"11 1","pages":"170 - 177"},"PeriodicalIF":2.3,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47195146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muh. Sadat Hamzah, M. W. Wildan, Kusmono, E. Suharyadi
{"title":"Effect of sintering temperature on physical, mechanical, and electrical properties of nano silica particles synthesized from Indonesia local sand for piezoelectric application","authors":"Muh. Sadat Hamzah, M. W. Wildan, Kusmono, E. Suharyadi","doi":"10.1080/21870764.2023.2173851","DOIUrl":"https://doi.org/10.1080/21870764.2023.2173851","url":null,"abstract":"ABSTRACT This study aims to determine the effect of the sintering temperature of nanosilica on physical, mechanical, dielectric, and output voltage properties. The nanosilica particles used in this experiment were produced using the alkaline fusion method from natural sand. The green bodies were uniaxially formed with a pressure of 75 MPa and then were pressureless sintered at various temperatures of 1330, 1360, 1390, 1420, and 1450°C for 2 hours in an air atmosphere. The results of sintering showed that the highest bulk density and the relative density of 2.49 ± 0.03 g/cm3 and 94.03 ± 0.01% respectively were achieved at a sintering temperature of 1390°C. The XRD patterns of the sintered silica indicated phases of quartz, tridymite, and cristobalite, with the strongest peak corresponding to the cristobalite phase. The highest compressive strength and diametral tensile strength values of 17.23 ± 0.27 MPa and 6.06 ± 0.71 MPa respectively were obtained on specimens sintered at 1390°C. However, the highest values of the dielectric constant of 544.28, dielectric loss of 195.94, and output voltage of 1.58 mV were obtained at a sintering temperature of 1330°C. Various sintering temperatures do not significantly influence the characteristic of dielectric and output voltage of the sintered specimens.","PeriodicalId":15130,"journal":{"name":"Journal of Asian Ceramic Societies","volume":"11 1","pages":"178 - 187"},"PeriodicalIF":2.3,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46942441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The grain growth mechanisms for 0.8(Bi,Na)TiO3-0.2(Sr,Ti)O3 ceramics prepared using a two-step sintering process","authors":"Lee Gwangseop, J. Koh","doi":"10.1080/21870764.2022.2163961","DOIUrl":"https://doi.org/10.1080/21870764.2022.2163961","url":null,"abstract":"ABSTRACT In this study, lead-free 0.8(Bi,Na)TiO3-0.2(Sr,Ti)O3 piezoelectric ceramics were prepared using a two-step sintering process to analyze their sintering mechanisms. Two-step sintering process has benefits of being able to be conducted at lower temperatures than conventional sintering process, but the complicated sintering mechanisms involved in this process have not been yet fully investigated. Therefore, in the present study, two-step sintering mechanism for lead-free piezoelectric ceramics was analyzed by estimating the activation energy required depending on the sintering conditions. Using the two-step sintering process, the piezoelectric charge and electromechanical coupling coefficients improved from 146 pC/N and 0.347 to 163 pC/N and 0.377, respectively. By comparing the grain-growth mechanisms for the conventional and two-step sintering processes, it appeared that the sintering mechanisms differed. By introducing the two-step sintering process, piezoelectric ceramics with improved piezoelectric charge and electromechanical coupling coefficients were produced.","PeriodicalId":15130,"journal":{"name":"Journal of Asian Ceramic Societies","volume":"11 1","pages":"138 - 145"},"PeriodicalIF":2.3,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41544561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Il-Gok Hong, Ho-Yong Shin, Jong-Ho Kim, U. Paik, J. Im
{"title":"Two-step simulation of piezoelectric properties of porous PZT according to porosity","authors":"Il-Gok Hong, Ho-Yong Shin, Jong-Ho Kim, U. Paik, J. Im","doi":"10.1080/21870764.2022.2159928","DOIUrl":"https://doi.org/10.1080/21870764.2022.2159928","url":null,"abstract":"ABSTRACT Porous piezoelectric materials have been widely used in hydrophone applications owing to their excellent hydrostatic charge constant (dh) and voltage constant (gh). However, owing to the difficulty in sample manufacturing, the evaluation of the overall piezoelectric properties for reliable device design using simulations is challenging. Herein, a two-step simulation was performed to accurately determine the overall properties of the porous PZT. First, the piezoelectric charge constant was calculated by displacement calculations using the electrostrictive effect. Second, using the calculated piezoelectric charge constant and impedance spectrum obtained from the experiment, the initial value for optimizing the properties was selected, and the overall properties were obtained using the parametric estimation technique. These parametric estimation simulation procedures were performed with the samples of radial and thickness modes based on the IEEE standards. Finally, the piezoelectric properties obtained were compared and verified with the experimental values. Therefore, the overall piezoelectric properties include mechanical, frequency and dielectric properties according to the porosity were obtained with reliable results.","PeriodicalId":15130,"journal":{"name":"Journal of Asian Ceramic Societies","volume":"11 1","pages":"105 - 115"},"PeriodicalIF":2.3,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49163726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vat photopolymerization-based 3D printing of complex-shaped and high-performance Al2O3 ceramic tool with chip-breaking grooves: Cutting performance and wear mechanism","authors":"Haidong Wu, Wei Liu, Yuerui Xu, Lifu Lin, Yehua Li, Shanghua Wu","doi":"10.1080/21870764.2023.2168343","DOIUrl":"https://doi.org/10.1080/21870764.2023.2168343","url":null,"abstract":"ABSTRACT Due to the processing of alumina ceramic cutting tools with complex shapes using traditional methods is difficult and time-consuming, vat-photopolymerization-based 3D printing was adopted to fabricate Al2O3 ceramic cutting tools with grooves for the first time. Subsequently, cutting performance evaluation and wear mechanism analysis were conducted. The relative density, Vickers hardness, and bending strength of the alumina cutting tools were determined. The effects of the cutting speed, feed rate, and cutting depth on the cutting performance and wear mechanism of the cutting tools were systematically investigated. In addition, two commercial cutting tools, namely cemented carbide and ceramic tools without grooves, were used for comparison. The cutting speed has the highest influence on the cutting performance, whereas the cutting depth has the least influence. The cutting performance of the prepared alumina cutting inserts with chip breaker grooves superior to that those without chip-breaking grooves and that of the cemented carbide tools. The wear mechanisms of the prepared alumina cutting tools and commercial tools were determined to be abrasive and adhesive wear, and those of the cemented carbide tools were adhesive wear and breakage. This work opens a new avenue for the future preparation of high-performance and complex-shaped ceramic cutting tools.","PeriodicalId":15130,"journal":{"name":"Journal of Asian Ceramic Societies","volume":"11 1","pages":"159 - 169"},"PeriodicalIF":2.3,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41838560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cordierite-based ceramics from stevensite clay and coal fly ash","authors":"Hanaa Hajjou, K. Tabit, L. Saâdi, M. Waqif","doi":"10.1080/21870764.2022.2153473","DOIUrl":"https://doi.org/10.1080/21870764.2022.2153473","url":null,"abstract":"ABSTRACT Cordierite-based ceramic is one of the most interesting engineering materials that has attractive and multidisciplinary assets, such as low thermal expansion coefficient, excellent thermal shock resistance, high refractoriness, good mechanical properties, and so on. In this work, cordierite-based ceramics were prepared mainly from stevensite-rich clay or coal fly ash (CFA) and stevensite-rich clay using a solid-state interaction process. The influence of heating temperature, in the range of 800–1250°C, and starting materials on the microstructure-temperature evolutions and mechanical strength were evaluated using TGA-DTA, XRD, FTIR, SEM, and dilatometric analysis. The results revealed, for both formulations heating in the temperature range 800–1100°C, the transformation of stevensite-rich clay into enstatite and its polymorphisms. Further heating induced the formation of the cordierite phase at 1200°C, for the formulation consisted mainly of stevensite-rich clay and CFA, and at 1250°C for that contained mainly stevensite-rich clay. The addition of CFA to stevensite-rich clay enhanced its reactivity and involved the increase in mechanical strength from 5 MPa to 15 MPa at 1200°C.","PeriodicalId":15130,"journal":{"name":"Journal of Asian Ceramic Societies","volume":"11 1","pages":"80 - 87"},"PeriodicalIF":2.3,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46604706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Cui, Kang Guan, Pinggen Rao, Cheng Peng, Q. Zeng, Jiantao Liu, Shuyan Yu
{"title":"The effect of groove and notch tip angles on testing fracture toughness by SEVNB method: models and experimental validation","authors":"J. Cui, Kang Guan, Pinggen Rao, Cheng Peng, Q. Zeng, Jiantao Liu, Shuyan Yu","doi":"10.1080/21870764.2022.2156676","DOIUrl":"https://doi.org/10.1080/21870764.2022.2156676","url":null,"abstract":"ABSTRACT The single-edged V-notch beam (SEVNB) method is considered as an effective method for evaluating the fracture toughness values of brittle materials. In this method, it is assumed that the V-notch is a natural crack. However, this assumption may cause an overestimation of the fracture toughness due to the “notch passivation effect”. To investigate the effects of the V-notch and groove tip angles on the fracture toughness testing of ceramic materials, three typical models were established in this work. The stress intensity factors of these models were calculated using a J-integral based on the linear finite element method (LFEM). The results indicated that the measured fracture toughness values could be overestimated by 0.5%- 13.7% when the angle of the V-notch tip increased from 10° to 60°. Increasing the angle formed by the V-notch and groove from 10° to 60°, fracture toughness was overevaluated by about 0% – 2.0%. When the angle formed by the V-notch and groove increased to 120°, the fracture toughness was overevaluated by about 31%. Finally, two equations were fitted to assess the angles effects on fracture toughness, and the results have been validated by experiments. An important reference for the SEVNB method can be found in this work.","PeriodicalId":15130,"journal":{"name":"Journal of Asian Ceramic Societies","volume":"11 1","pages":"39 - 52"},"PeriodicalIF":2.3,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46417164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiabao Liu, Zhaofeng Chen, Lixia Yang, P. Chai, Qiang Wan
{"title":"The effect of SiC coatings microstructure on their infrared emissivity","authors":"Jiabao Liu, Zhaofeng Chen, Lixia Yang, P. Chai, Qiang Wan","doi":"10.1080/21870764.2022.2159952","DOIUrl":"https://doi.org/10.1080/21870764.2022.2159952","url":null,"abstract":"ABSTRACT Infrared temperature measurement is widely used in the MOCVD process, and improving the surface infrared emissivity of the graphite base is beneficial to improve the temperature measurement accuracy. In this study, SiC coatings were prepared by CVD on graphite substrate using different process parameters including CVD temperature, total pressure, H2/MTS ratio. The infrared emissivity of SiC coatings with different microstructures was investigated. All SiC coatings obtained were β-SiC. The infrared emissivities of the three samples with different surface morphologies are 0.93, 0.95 and 0.97, respectively. As the surface roughness increases, the reflection and scattering of thermally radiated electromagnetic waves increases, resulting in higher infrared emissivity. The loose structure of the grain surface makes the surface electromagnetic wave and light wave resonant coupling, thus increasing the infrared emissivity.","PeriodicalId":15130,"journal":{"name":"Journal of Asian Ceramic Societies","volume":"11 1","pages":"98 - 104"},"PeriodicalIF":2.3,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42643161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Kim, Chang-Hyeon Jo, Min-Sung Bae, M. Ichimura, J. Koh
{"title":"Low temperature processed CO2 laser-assisted RF-sputtered GaN thin film for wide bandgap semiconductors","authors":"S. Kim, Chang-Hyeon Jo, Min-Sung Bae, M. Ichimura, J. Koh","doi":"10.1080/21870764.2022.2151102","DOIUrl":"https://doi.org/10.1080/21870764.2022.2151102","url":null,"abstract":"ABSTRACT Owing to its wide bandgap (3.4 eV) and high electron mobility, GaN has attracted significant attention for applications in solar cells, power transistors, and high-electron-mobility transistors. Crystallized GaN thin film can be hardly prepared in thin film form by employing physical vapor deposition processes, such as reactive RF sputtering and pulsed laser deposition, because a high driving energy is required to deposit a thin film due to its high binding energy. Herein, GaN thin films were prepared by CO2 laser-assisted RF sputtering at a relatively low temperature of 200°C. The CO2 laser with a 10,600 nm wavelength shows excellent conversion efficiency from optical energy to thermal energy. At the optimized laser energy density of 0.98 W/mm2, GaN thin film can have a (0002) orientation with a bandgap energy of 3.26 eV. The crystalline, surface morphological, and optical properties of the fabricated GaN thin films were evaluated using X-ray diffraction, FE-SEM, X-ray photoelectron (XPS), and photoluminescence (PL) spectroscopy, and UV-vis spectrometry. The energy bandgap of the fabricated GaN thin film was measured using the Tauc plot and confirmed via PL. The film composition thus obtained was analyzed using XPS.","PeriodicalId":15130,"journal":{"name":"Journal of Asian Ceramic Societies","volume":"11 1","pages":"68 - 79"},"PeriodicalIF":2.3,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44878832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Wen, J. Nie, Haoran Dong, Maoqi Ju, Y. Liang, M. Cai
{"title":"Enhancing the thermal shock resistance of Al2O3-SiC-C castables via the generation of in-situ SiC whiskers","authors":"L. Wen, J. Nie, Haoran Dong, Maoqi Ju, Y. Liang, M. Cai","doi":"10.1080/21870764.2022.2155341","DOIUrl":"https://doi.org/10.1080/21870764.2022.2155341","url":null,"abstract":"ABSTRACT The demand for Al2O3-SiC-C castables (ASCs) with excellent strength and thermal shock resistance has expanded considerably. Here, the effects of Fe-Si3N4 on the thermal shock resistance and physical properties of ASCs were studied. The addition of Fe-Si3N4 to ASCs lead to the formation of SiC whiskers, enhancing the cold modulus of rupture and the cold crushing strength of the castables. The formed SiC can fill the pores left by the oxidation of carbon after heating at 1450°C for 3 h, thereby improving the bulk density of the castables. Additionally, the residual strength ratio of the castables after three thermal shock cycles was improved and this was attributed to the generation of microcracks due to the release of N2 and the generation of the whiskers. The optimal Fe-Si3N4 content was 4 wt%. Therefore, the results of this study revealed that the thermal shock resistance and physical properties of ASCs were enhanced by the addition of Fe-Si3N4.","PeriodicalId":15130,"journal":{"name":"Journal of Asian Ceramic Societies","volume":"11 1","pages":"208 - 214"},"PeriodicalIF":2.3,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46042289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}