The grain growth mechanisms for 0.8(Bi,Na)TiO3-0.2(Sr,Ti)O3 ceramics prepared using a two-step sintering process

IF 2.2 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
Lee Gwangseop, J. Koh
{"title":"The grain growth mechanisms for 0.8(Bi,Na)TiO3-0.2(Sr,Ti)O3 ceramics prepared using a two-step sintering process","authors":"Lee Gwangseop, J. Koh","doi":"10.1080/21870764.2022.2163961","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this study, lead-free 0.8(Bi,Na)TiO3-0.2(Sr,Ti)O3 piezoelectric ceramics were prepared using a two-step sintering process to analyze their sintering mechanisms. Two-step sintering process has benefits of being able to be conducted at lower temperatures than conventional sintering process, but the complicated sintering mechanisms involved in this process have not been yet fully investigated. Therefore, in the present study, two-step sintering mechanism for lead-free piezoelectric ceramics was analyzed by estimating the activation energy required depending on the sintering conditions. Using the two-step sintering process, the piezoelectric charge and electromechanical coupling coefficients improved from 146 pC/N and 0.347 to 163 pC/N and 0.377, respectively. By comparing the grain-growth mechanisms for the conventional and two-step sintering processes, it appeared that the sintering mechanisms differed. By introducing the two-step sintering process, piezoelectric ceramics with improved piezoelectric charge and electromechanical coupling coefficients were produced.","PeriodicalId":15130,"journal":{"name":"Journal of Asian Ceramic Societies","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Ceramic Societies","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21870764.2022.2163961","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT In this study, lead-free 0.8(Bi,Na)TiO3-0.2(Sr,Ti)O3 piezoelectric ceramics were prepared using a two-step sintering process to analyze their sintering mechanisms. Two-step sintering process has benefits of being able to be conducted at lower temperatures than conventional sintering process, but the complicated sintering mechanisms involved in this process have not been yet fully investigated. Therefore, in the present study, two-step sintering mechanism for lead-free piezoelectric ceramics was analyzed by estimating the activation energy required depending on the sintering conditions. Using the two-step sintering process, the piezoelectric charge and electromechanical coupling coefficients improved from 146 pC/N and 0.347 to 163 pC/N and 0.377, respectively. By comparing the grain-growth mechanisms for the conventional and two-step sintering processes, it appeared that the sintering mechanisms differed. By introducing the two-step sintering process, piezoelectric ceramics with improved piezoelectric charge and electromechanical coupling coefficients were produced.
研究了两步烧结制备0.8(Bi,Na)TiO3-0.2(Sr,Ti)O3陶瓷的晶粒生长机理
本研究采用两步烧结工艺制备无铅0.8(Bi,Na)TiO3-0.2(Sr,Ti)O3压电陶瓷,分析其烧结机理。两步烧结工艺具有比传统烧结工艺温度更低的优点,但其复杂的烧结机理尚未得到充分的研究。因此,在本研究中,通过估算不同烧结条件下所需的活化能,分析无铅压电陶瓷的两步烧结机理。采用两步烧结工艺,压电电荷系数和机电耦合系数分别从146 pC/N和0.347提高到163 pC/N和0.377。通过比较常规烧结和两步烧结的晶粒生长机制,发现两步烧结的晶粒生长机制不同。通过引入两步烧结工艺,制备出了具有较高压电电荷和机电耦合系数的压电陶瓷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Asian Ceramic Societies
Journal of Asian Ceramic Societies Materials Science-Ceramics and Composites
CiteScore
5.00
自引率
4.30%
发文量
78
审稿时长
10 weeks
期刊介绍: The Journal of Asian Ceramic Societies is an open access journal publishing papers documenting original research and reviews covering all aspects of science and technology of Ceramics, Glasses, Composites, and related materials. These papers include experimental and theoretical aspects emphasizing basic science, processing, microstructure, characteristics, and functionality of ceramic materials. The journal publishes high quality full papers, letters for rapid publication, and in-depth review articles. All papers are subjected to a fair peer-review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信