S. Kim, Chang-Hyeon Jo, Min-Sung Bae, M. Ichimura, J. Koh
{"title":"用于宽禁带半导体的低温加工CO2激光辅助射频溅射GaN薄膜","authors":"S. Kim, Chang-Hyeon Jo, Min-Sung Bae, M. Ichimura, J. Koh","doi":"10.1080/21870764.2022.2151102","DOIUrl":null,"url":null,"abstract":"ABSTRACT Owing to its wide bandgap (3.4 eV) and high electron mobility, GaN has attracted significant attention for applications in solar cells, power transistors, and high-electron-mobility transistors. Crystallized GaN thin film can be hardly prepared in thin film form by employing physical vapor deposition processes, such as reactive RF sputtering and pulsed laser deposition, because a high driving energy is required to deposit a thin film due to its high binding energy. Herein, GaN thin films were prepared by CO2 laser-assisted RF sputtering at a relatively low temperature of 200°C. The CO2 laser with a 10,600 nm wavelength shows excellent conversion efficiency from optical energy to thermal energy. At the optimized laser energy density of 0.98 W/mm2, GaN thin film can have a (0002) orientation with a bandgap energy of 3.26 eV. The crystalline, surface morphological, and optical properties of the fabricated GaN thin films were evaluated using X-ray diffraction, FE-SEM, X-ray photoelectron (XPS), and photoluminescence (PL) spectroscopy, and UV-vis spectrometry. The energy bandgap of the fabricated GaN thin film was measured using the Tauc plot and confirmed via PL. The film composition thus obtained was analyzed using XPS.","PeriodicalId":15130,"journal":{"name":"Journal of Asian Ceramic Societies","volume":"11 1","pages":"68 - 79"},"PeriodicalIF":2.2000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low temperature processed CO2 laser-assisted RF-sputtered GaN thin film for wide bandgap semiconductors\",\"authors\":\"S. Kim, Chang-Hyeon Jo, Min-Sung Bae, M. Ichimura, J. Koh\",\"doi\":\"10.1080/21870764.2022.2151102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Owing to its wide bandgap (3.4 eV) and high electron mobility, GaN has attracted significant attention for applications in solar cells, power transistors, and high-electron-mobility transistors. Crystallized GaN thin film can be hardly prepared in thin film form by employing physical vapor deposition processes, such as reactive RF sputtering and pulsed laser deposition, because a high driving energy is required to deposit a thin film due to its high binding energy. Herein, GaN thin films were prepared by CO2 laser-assisted RF sputtering at a relatively low temperature of 200°C. The CO2 laser with a 10,600 nm wavelength shows excellent conversion efficiency from optical energy to thermal energy. At the optimized laser energy density of 0.98 W/mm2, GaN thin film can have a (0002) orientation with a bandgap energy of 3.26 eV. The crystalline, surface morphological, and optical properties of the fabricated GaN thin films were evaluated using X-ray diffraction, FE-SEM, X-ray photoelectron (XPS), and photoluminescence (PL) spectroscopy, and UV-vis spectrometry. The energy bandgap of the fabricated GaN thin film was measured using the Tauc plot and confirmed via PL. The film composition thus obtained was analyzed using XPS.\",\"PeriodicalId\":15130,\"journal\":{\"name\":\"Journal of Asian Ceramic Societies\",\"volume\":\"11 1\",\"pages\":\"68 - 79\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Asian Ceramic Societies\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/21870764.2022.2151102\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Ceramic Societies","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21870764.2022.2151102","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Low temperature processed CO2 laser-assisted RF-sputtered GaN thin film for wide bandgap semiconductors
ABSTRACT Owing to its wide bandgap (3.4 eV) and high electron mobility, GaN has attracted significant attention for applications in solar cells, power transistors, and high-electron-mobility transistors. Crystallized GaN thin film can be hardly prepared in thin film form by employing physical vapor deposition processes, such as reactive RF sputtering and pulsed laser deposition, because a high driving energy is required to deposit a thin film due to its high binding energy. Herein, GaN thin films were prepared by CO2 laser-assisted RF sputtering at a relatively low temperature of 200°C. The CO2 laser with a 10,600 nm wavelength shows excellent conversion efficiency from optical energy to thermal energy. At the optimized laser energy density of 0.98 W/mm2, GaN thin film can have a (0002) orientation with a bandgap energy of 3.26 eV. The crystalline, surface morphological, and optical properties of the fabricated GaN thin films were evaluated using X-ray diffraction, FE-SEM, X-ray photoelectron (XPS), and photoluminescence (PL) spectroscopy, and UV-vis spectrometry. The energy bandgap of the fabricated GaN thin film was measured using the Tauc plot and confirmed via PL. The film composition thus obtained was analyzed using XPS.
期刊介绍:
The Journal of Asian Ceramic Societies is an open access journal publishing papers documenting original research and reviews covering all aspects of science and technology of Ceramics, Glasses, Composites, and related materials. These papers include experimental and theoretical aspects emphasizing basic science, processing, microstructure, characteristics, and functionality of ceramic materials. The journal publishes high quality full papers, letters for rapid publication, and in-depth review articles. All papers are subjected to a fair peer-review process.