Journal of Biomedical Semantics最新文献

筛选
英文 中文
Exploiting document graphs for inter sentence relation extraction 利用文档图提取句子间关系
IF 1.9 3区 工程技术
Journal of Biomedical Semantics Pub Date : 2022-06-03 DOI: 10.1186/s13326-022-00267-3
Hoang-Quynh Le, Duy-Cat Can, Nigel Collier
{"title":"Exploiting document graphs for inter sentence relation extraction","authors":"Hoang-Quynh Le, Duy-Cat Can, Nigel Collier","doi":"10.1186/s13326-022-00267-3","DOIUrl":"https://doi.org/10.1186/s13326-022-00267-3","url":null,"abstract":"","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"13 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65845317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Synthesizing evidence from clinical trials with dynamic interactive argument trees 用动态交互论证树综合临床试验证据
IF 1.9 3区 工程技术
Journal of Biomedical Semantics Pub Date : 2022-06-03 DOI: 10.1186/s13326-022-00270-8
Sanchez-Graillet, Olivia, Witte, Christian, Grimm, Frank, Grautoff, Steffen, Ell, Basil, Cimiano, Philipp
{"title":"Synthesizing evidence from clinical trials with dynamic interactive argument trees","authors":"Sanchez-Graillet, Olivia, Witte, Christian, Grimm, Frank, Grautoff, Steffen, Ell, Basil, Cimiano, Philipp","doi":"10.1186/s13326-022-00270-8","DOIUrl":"https://doi.org/10.1186/s13326-022-00270-8","url":null,"abstract":"Evidence-based medicine propagates that medical/clinical decisions are made by taking into account high-quality evidence, most notably in the form of randomized clinical trials. Evidence-based decision-making requires aggregating the evidence available in multiple trials to reach –by means of systematic reviews– a conclusive recommendation on which treatment is best suited for a given patient population. However, it is challenging to produce systematic reviews to keep up with the ever-growing number of published clinical trials. Therefore, new computational approaches are necessary to support the creation of systematic reviews that include the most up-to-date evidence.We propose a method to synthesize the evidence available in clinical trials in an ad-hoc and on-demand manner by automatically arranging such evidence in the form of a hierarchical argument that recommends a therapy as being superior to some other therapy along a number of key dimensions corresponding to the clinical endpoints of interest. The method has also been implemented as a web tool that allows users to explore the effects of excluding different points of evidence, and indicating relative preferences on the endpoints. Through two use cases, our method was shown to be able to generate conclusions similar to the ones of published systematic reviews. To evaluate our method implemented as a web tool, we carried out a survey and usability analysis with medical professionals. The results show that the tool was perceived as being valuable, acknowledging its potential to inform clinical decision-making and to complement the information from existing medical guidelines. The method presented is a simple but yet effective argumentation-based method that contributes to support the synthesis of clinical trial evidence. A current limitation of the method is that it relies on a manually populated knowledge base. This problem could be alleviated by deploying natural language processing methods to extract the relevant information from publications.","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"22 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138538451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
An annotated corpus of clinical trial publications supporting schema-based relational information extraction 临床试验出版物的注释语料库,支持基于模式的关系信息提取
IF 1.9 3区 工程技术
Journal of Biomedical Semantics Pub Date : 2022-05-23 DOI: 10.1186/s13326-022-00271-7
Olivia Sanchez-Graillet, Christian Witte, Frank Grimm, P. Cimiano
{"title":"An annotated corpus of clinical trial publications supporting schema-based relational information extraction","authors":"Olivia Sanchez-Graillet, Christian Witte, Frank Grimm, P. Cimiano","doi":"10.1186/s13326-022-00271-7","DOIUrl":"https://doi.org/10.1186/s13326-022-00271-7","url":null,"abstract":"","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43016385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
SemClinBr - a multi-institutional and multi-specialty semantically annotated corpus for Portuguese clinical NLP tasks. SemClinBr -一个多机构和多专业语义注释的语料库,用于葡萄牙临床NLP任务。
IF 1.9 3区 工程技术
Journal of Biomedical Semantics Pub Date : 2022-05-08 DOI: 10.1186/s13326-022-00269-1
Lucas Emanuel Silva E Oliveira, Ana Carolina Peters, Adalniza Moura Pucca da Silva, Caroline Pilatti Gebeluca, Yohan Bonescki Gumiel, Lilian Mie Mukai Cintho, Deborah Ribeiro Carvalho, Sadid Al Hasan, Claudia Maria Cabral Moro
{"title":"SemClinBr - a multi-institutional and multi-specialty semantically annotated corpus for Portuguese clinical NLP tasks.","authors":"Lucas Emanuel Silva E Oliveira,&nbsp;Ana Carolina Peters,&nbsp;Adalniza Moura Pucca da Silva,&nbsp;Caroline Pilatti Gebeluca,&nbsp;Yohan Bonescki Gumiel,&nbsp;Lilian Mie Mukai Cintho,&nbsp;Deborah Ribeiro Carvalho,&nbsp;Sadid Al Hasan,&nbsp;Claudia Maria Cabral Moro","doi":"10.1186/s13326-022-00269-1","DOIUrl":"https://doi.org/10.1186/s13326-022-00269-1","url":null,"abstract":"<p><strong>Background: </strong>The high volume of research focusing on extracting patient information from electronic health records (EHRs) has led to an increase in the demand for annotated corpora, which are a precious resource for both the development and evaluation of natural language processing (NLP) algorithms. The absence of a multipurpose clinical corpus outside the scope of the English language, especially in Brazilian Portuguese, is glaring and severely impacts scientific progress in the biomedical NLP field.</p><p><strong>Methods: </strong>In this study, a semantically annotated corpus was developed using clinical text from multiple medical specialties, document types, and institutions. In addition, we present, (1) a survey listing common aspects, differences, and lessons learned from previous research, (2) a fine-grained annotation schema that can be replicated to guide other annotation initiatives, (3) a web-based annotation tool focusing on an annotation suggestion feature, and (4) both intrinsic and extrinsic evaluation of the annotations.</p><p><strong>Results: </strong>This study resulted in SemClinBr, a corpus that has 1000 clinical notes, labeled with 65,117 entities and 11,263 relations. In addition, both negation cues and medical abbreviation dictionaries were generated from the annotations. The average annotator agreement score varied from 0.71 (applying strict match) to 0.92 (considering a relaxed match) while accepting partial overlaps and hierarchically related semantic types. The extrinsic evaluation, when applying the corpus to two downstream NLP tasks, demonstrated the reliability and usefulness of annotations, with the systems achieving results that were consistent with the agreement scores.</p><p><strong>Conclusion: </strong>The SemClinBr corpus and other resources produced in this work can support clinical NLP studies, providing a common development and evaluation resource for the research community, boosting the utilization of EHRs in both clinical practice and biomedical research. To the best of our knowledge, SemClinBr is the first available Portuguese clinical corpus.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"13 1","pages":"13"},"PeriodicalIF":1.9,"publicationDate":"2022-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9080187/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10252310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Applying the FAIR principles to data in a hospital: challenges and opportunities in a pandemic 将公平原则应用于医院数据:大流行中的挑战和机遇
IF 1.9 3区 工程技术
Journal of Biomedical Semantics Pub Date : 2022-04-25 DOI: 10.1186/s13326-022-00263-7
Queralt-Rosinach, Núria, Kaliyaperumal, Rajaram, Bernabé, César H., Long, Qinqin, Joosten, Simone A., van der Wijk, Henk Jan, Flikkenschild, Erik L.A., Burger, Kees, Jacobsen, Annika, Mons, Barend, Roos, Marco
{"title":"Applying the FAIR principles to data in a hospital: challenges and opportunities in a pandemic","authors":"Queralt-Rosinach, Núria, Kaliyaperumal, Rajaram, Bernabé, César H., Long, Qinqin, Joosten, Simone A., van der Wijk, Henk Jan, Flikkenschild, Erik L.A., Burger, Kees, Jacobsen, Annika, Mons, Barend, Roos, Marco","doi":"10.1186/s13326-022-00263-7","DOIUrl":"https://doi.org/10.1186/s13326-022-00263-7","url":null,"abstract":"The COVID-19 pandemic has challenged healthcare systems and research worldwide. Data is collected all over the world and needs to be integrated and made available to other researchers quickly. However, the various heterogeneous information systems that are used in hospitals can result in fragmentation of health data over multiple data ‘silos’ that are not interoperable for analysis. Consequently, clinical observations in hospitalised patients are not prepared to be reused efficiently and timely. There is a need to adapt the research data management in hospitals to make COVID-19 observational patient data machine actionable, i.e. more Findable, Accessible, Interoperable and Reusable (FAIR) for humans and machines. We therefore applied the FAIR principles in the hospital to make patient data more FAIR. In this paper, we present our FAIR approach to transform COVID-19 observational patient data collected in the hospital into machine actionable digital objects to answer medical doctors’ research questions. With this objective, we conducted a coordinated FAIRification among stakeholders based on ontological models for data and metadata, and a FAIR based architecture that complements the existing data management. We applied FAIR Data Points for metadata exposure, turning investigational parameters into a FAIR dataset. We demonstrated that this dataset is machine actionable by means of three different computational activities: federated query of patient data along open existing knowledge sources across the world through the Semantic Web, implementing Web APIs for data query interoperability, and building applications on top of these FAIR patient data for FAIR data analytics in the hospital. Our work demonstrates that a FAIR research data management plan based on ontological models for data and metadata, open Science, Semantic Web technologies, and FAIR Data Points is providing data infrastructure in the hospital for machine actionable FAIR Digital Objects. This FAIR data is prepared to be reused for federated analysis, linkable to other FAIR data such as Linked Open Data, and reusable to develop software applications on top of them for hypothesis generation and knowledge discovery.","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"90 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138538450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Defining health data elements under the HL7 development framework for metadata management 在用于元数据管理的HL7开发框架下定义运行状况数据元素
IF 1.9 3区 工程技术
Journal of Biomedical Semantics Pub Date : 2022-03-18 DOI: 10.1186/s13326-022-00265-5
Yang, Zhe, Jiang, Kun, Lou, Miaomiao, Gong, Yang, Zhang, Lili, Liu, Jing, Bao, Xinyu, Liu, Danhong, Yang, Peng
{"title":"Defining health data elements under the HL7 development framework for metadata management","authors":"Yang, Zhe, Jiang, Kun, Lou, Miaomiao, Gong, Yang, Zhang, Lili, Liu, Jing, Bao, Xinyu, Liu, Danhong, Yang, Peng","doi":"10.1186/s13326-022-00265-5","DOIUrl":"https://doi.org/10.1186/s13326-022-00265-5","url":null,"abstract":"Health data from different specialties or domains generallly have diverse formats and meanings, which can cause semantic communication barriers when these data are exchanged among heterogeneous systems. As such, this study is intended to develop a national health concept data model (HCDM) and develop a corresponding system to facilitate healthcare data standardization and centralized metadata management. Based on 55 data sets (4640 data items) from 7 health business domains in China, a bottom-up approach was employed to build the structure and metadata for HCDM by referencing HL7 RIM. According to ISO/IEC 11179, a top-down approach was used to develop and standardize the data elements. HCDM adopted three-level architecture of class, attribute and data type, and consisted of 6 classes and 15 sub-classes. Each class had a set of descriptive attributes and every attribute was assigned a data type. 100 initial data elements (DEs) were extracted from HCDM and 144 general DEs were derived from corresponding initial DEs. Domain DEs were transformed by specializing general DEs using 12 controlled vocabularies which developed from HL7 vocabularies and actual health demands. A model-based system was successfully established to evaluate and manage the NHDD. HCDM provided a unified metadata reference for multi-source data standardization and management. This approach of defining health data elements was a feasible solution in healthcare information standardization to enable healthcare interoperability in China.","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"24 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138538405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Semantic modelling of common data elements for rare disease registries, and a prototype workflow for their deployment over registry data 罕见病注册表常用数据元素的语义建模,以及在注册表数据上部署这些元素的原型工作流
IF 1.9 3区 工程技术
Journal of Biomedical Semantics Pub Date : 2022-03-15 DOI: 10.1186/s13326-022-00264-6
Kaliyaperumal, Rajaram, Wilkinson, Mark D., Moreno, Pablo Alarcón, Benis, Nirupama, Cornet, Ronald, dos Santos Vieira, Bruna, Dumontier, Michel, Bernabé, César Henrique, Jacobsen, Annika, Le Cornec, Clémence M. A., Godoy, Mario Prieto, Queralt-Rosinach, Núria, Schultze Kool, Leo J., Swertz, Morris A., van Damme, Philip, van der Velde, K. Joeri, Lalout, Nawel, Zhang, Shuxin, Roos, Marco
{"title":"Semantic modelling of common data elements for rare disease registries, and a prototype workflow for their deployment over registry data","authors":"Kaliyaperumal, Rajaram, Wilkinson, Mark D., Moreno, Pablo Alarcón, Benis, Nirupama, Cornet, Ronald, dos Santos Vieira, Bruna, Dumontier, Michel, Bernabé, César Henrique, Jacobsen, Annika, Le Cornec, Clémence M. A., Godoy, Mario Prieto, Queralt-Rosinach, Núria, Schultze Kool, Leo J., Swertz, Morris A., van Damme, Philip, van der Velde, K. Joeri, Lalout, Nawel, Zhang, Shuxin, Roos, Marco","doi":"10.1186/s13326-022-00264-6","DOIUrl":"https://doi.org/10.1186/s13326-022-00264-6","url":null,"abstract":"The European Platform on Rare Disease Registration (EU RD Platform) aims to address the fragmentation of European rare disease (RD) patient data, scattered among hundreds of independent and non-coordinating registries, by establishing standards for integration and interoperability. The first practical output of this effort was a set of 16 Common Data Elements (CDEs) that should be implemented by all RD registries. Interoperability, however, requires decisions beyond data elements - including data models, formats, and semantics. Within the European Joint Programme on Rare Diseases (EJP RD), we aim to further the goals of the EU RD Platform by generating reusable RD semantic model templates that follow the FAIR Data Principles. Through a team-based iterative approach, we created semantically grounded models to represent each of the CDEs, using the SemanticScience Integrated Ontology as the core framework for representing the entities and their relationships. Within that framework, we mapped the concepts represented in the CDEs, and their possible values, into domain ontologies such as the Orphanet Rare Disease Ontology, Human Phenotype Ontology and National Cancer Institute Thesaurus. Finally, we created an exemplar, reusable ETL pipeline that we will be deploying over these non-coordinating data repositories to assist them in creating model-compliant FAIR data without requiring site-specific coding nor expertise in Linked Data or FAIR. Within the EJP RD project, we determined that creating reusable, expert-designed templates reduced or eliminated the requirement for our participating biomedical domain experts and rare disease data hosts to understand OWL semantics. This enabled them to publish highly expressive FAIR data using tools and approaches that were already familiar to them.","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"32 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138538468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Transfer language space with similar domain adaptation: a case study with hepatocellular carcinoma. 具有相似域适应的迁移语言空间:以肝细胞癌为例。
IF 1.9 3区 工程技术
Journal of Biomedical Semantics Pub Date : 2022-02-23 DOI: 10.1186/s13326-022-00262-8
Amara Tariq, Omar Kallas, Patricia Balthazar, Scott Jeffery Lee, Terry Desser, Daniel Rubin, Judy Wawira Gichoya, Imon Banerjee
{"title":"Transfer language space with similar domain adaptation: a case study with hepatocellular carcinoma.","authors":"Amara Tariq,&nbsp;Omar Kallas,&nbsp;Patricia Balthazar,&nbsp;Scott Jeffery Lee,&nbsp;Terry Desser,&nbsp;Daniel Rubin,&nbsp;Judy Wawira Gichoya,&nbsp;Imon Banerjee","doi":"10.1186/s13326-022-00262-8","DOIUrl":"https://doi.org/10.1186/s13326-022-00262-8","url":null,"abstract":"<p><strong>Background: </strong>Transfer learning is a common practice in image classification with deep learning where the available data is often limited for training a complex model with millions of parameters. However, transferring language models requires special attention since cross-domain vocabularies (e.g. between two different modalities MR and US) do not always overlap as the pixel intensity range overlaps mostly for images.</p><p><strong>Method: </strong>We present a concept of similar domain adaptation where we transfer inter-institutional language models (context-dependent and context-independent) between two different modalities (ultrasound and MRI) to capture liver abnormalities.</p><p><strong>Results: </strong>We use MR and US screening exam reports for hepatocellular carcinoma as the use-case and apply the transfer language space strategy to automatically label imaging exams with and without structured template with > 0.9 average f1-score.</p><p><strong>Conclusion: </strong>We conclude that transfer learning along with fine-tuning the discriminative model is often more effective for performing shared targeted tasks than the training for a language space from scratch.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":" ","pages":"8"},"PeriodicalIF":1.9,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8867666/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39809029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multipurpose TNM stage ontology for cancer registries. 用于癌症登记的多用途TNM阶段本体。
IF 1.9 3区 工程技术
Journal of Biomedical Semantics Pub Date : 2022-02-22 DOI: 10.1186/s13326-022-00260-w
Nicholas Charles Nicholson, Francesco Giusti, Manola Bettio, Raquel Negrao Carvalho, Nadya Dimitrova, Tadeusz Dyba, Manuela Flego, Luciana Neamtiu, Giorgia Randi, Carmen Martos
{"title":"A multipurpose TNM stage ontology for cancer registries.","authors":"Nicholas Charles Nicholson,&nbsp;Francesco Giusti,&nbsp;Manola Bettio,&nbsp;Raquel Negrao Carvalho,&nbsp;Nadya Dimitrova,&nbsp;Tadeusz Dyba,&nbsp;Manuela Flego,&nbsp;Luciana Neamtiu,&nbsp;Giorgia Randi,&nbsp;Carmen Martos","doi":"10.1186/s13326-022-00260-w","DOIUrl":"https://doi.org/10.1186/s13326-022-00260-w","url":null,"abstract":"<p><strong>Background: </strong>Population-based cancer registries are a critical reference source for the surveillance and control of cancer. Cancer registries work extensively with the internationally recognised TNM classification system used to stage solid tumours, but the system is complex and compounded by the different TNM editions in concurrent use. TNM ontologies exist but the design requirements are different for the needs of the clinical and cancer-registry domains. Two TNM ontologies developed specifically for cancer registries were designed for different purposes and have limitations for serving wider application. A unified ontology is proposed to serve the various cancer registry TNM-related tasks and reduce the multiplication effects of different ontologies serving specific tasks. The ontology is comprehensive of the rules for TNM edition 7 as required by cancer registries and designed on a modular basis to allow extension to other TNM editions.</p><p><strong>Results: </strong>A unified ontology was developed building on the experience and design of the existing ontologies. It follows a modular approach allowing plug in of components dependent upon any particular TNM edition. A Java front-end was developed to interface with the ontology via the Web Ontology Language application programme interface and enables batch validation or classification of cancer registry records. The programme also allows the means of automated error correction in some instances. Initial tests verified the design concept by correctly inferring TNM stage and successfully handling the TNM-related validation checks on a number of cancer case records, with a performance similar to that of an existing ontology dedicated to the task.</p><p><strong>Conclusions: </strong>The unified ontology provides a multi-purpose tool for TNM-related tasks in a cancer registry and is scalable for different editions of TNM. It offers a convenient way of quickly checking validity of cancer case stage information and for batch processing of multi-record data via a dedicated front-end programme. The ontology is adaptable to many uses, either as a standalone TNM module or as a component in applications of wider focus. It provides a first step towards a single, unified TNM ontology for cancer registries.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":" ","pages":"7"},"PeriodicalIF":1.9,"publicationDate":"2022-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8862240/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39945025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Extending electronic medical records vector models with knowledge graphs to improve hospitalization prediction. 使用知识图扩展电子医疗记录向量模型,以改进住院预测。
IF 1.9 3区 工程技术
Journal of Biomedical Semantics Pub Date : 2022-02-22 DOI: 10.1186/s13326-022-00261-9
Raphaël Gazzotti, Catherine Faron, Fabien Gandon, Virginie Lacroix-Hugues, David Darmon
{"title":"Extending electronic medical records vector models with knowledge graphs to improve hospitalization prediction.","authors":"Raphaël Gazzotti,&nbsp;Catherine Faron,&nbsp;Fabien Gandon,&nbsp;Virginie Lacroix-Hugues,&nbsp;David Darmon","doi":"10.1186/s13326-022-00261-9","DOIUrl":"https://doi.org/10.1186/s13326-022-00261-9","url":null,"abstract":"<p><strong>Background: </strong>Artificial intelligence methods applied to electronic medical records (EMRs) hold the potential to help physicians save time by sharpening their analysis and decisions, thereby improving the health of patients. On the one hand, machine learning algorithms have proven their effectiveness in extracting information and exploiting knowledge extracted from data. On the other hand, knowledge graphs capture human knowledge by relying on conceptual schemas and formalization and supporting reasoning. Leveraging knowledge graphs that are legion in the medical field, it is possible to pre-process and enrich data representation used by machine learning algorithms. Medical data standardization is an opportunity to jointly exploit the richness of knowledge graphs and the capabilities of machine learning algorithms.</p><p><strong>Methods: </strong>We propose to address the problem of hospitalization prediction for patients with an approach that enriches vector representation of EMRs with information extracted from different knowledge graphs before learning and predicting. In addition, we performed an automatic selection of features resulting from knowledge graphs to distinguish noisy ones from those that can benefit the decision making. We report the results of our experiments on the PRIMEGE PACA database that contains more than 600,000 consultations carried out by 17 general practitioners (GPs).</p><p><strong>Results: </strong>A statistical evaluation shows that our proposed approach improves hospitalization prediction. More precisely, injecting features extracted from cross-domain knowledge graphs in the vector representation of EMRs given as input to the prediction algorithm significantly increases the F1 score of the prediction.</p><p><strong>Conclusions: </strong>By injecting knowledge from recognized reference sources into the representation of EMRs, it is possible to significantly improve the prediction of medical events. Future work would be to evaluate the impact of a feature selection step coupled with a combination of features extracted from several knowledge graphs. A possible avenue is to study more hierarchical levels and properties related to concepts, as well as to integrate more semantic annotators to exploit unstructured data.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":" ","pages":"6"},"PeriodicalIF":1.9,"publicationDate":"2022-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8861628/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39945027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信