Journal of Bioactive and Compatible Polymers最新文献

筛选
英文 中文
Construction of injectable collagen-microgel/tannic acid/nano-hydroxyapatite granular hydrogel and evaluation of its potential in wound healing 可注射胶原微凝胶/单宁酸/纳米羟基磷灰石颗粒水凝胶的构建及其伤口愈合潜力评价
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2023-06-13 DOI: 10.1177/08839115231180019
Yuan Li, Xiaomei Bai, Chunmei Ren, Yunning Ma, Yin Liu
{"title":"Construction of injectable collagen-microgel/tannic acid/nano-hydroxyapatite granular hydrogel and evaluation of its potential in wound healing","authors":"Yuan Li, Xiaomei Bai, Chunmei Ren, Yunning Ma, Yin Liu","doi":"10.1177/08839115231180019","DOIUrl":"https://doi.org/10.1177/08839115231180019","url":null,"abstract":"Granular hydrogel is a kind of hydrogel assembled from micro-particles, possessing micro-porous structure that advanced in terms of exudate absorption, mass exchange and cell migration during wound healing. The present study fabricated an injectable granular hydrogel based on tannic acid (TA) connected collagen (COL)-microparticles and hydroxyapatite nanoparticles (nHA). Through the coordination of calcium and phenolic hydroxyl groups, TA was bound on nHA surface to form TA modified nano-hydroxyapatite, TA@nHA. The content of TA bound on nHA surface was as high as 30%. TA@nHA as high as 20% was used as giant crosslinking component to connect COL microgels (COLmg) via hydrogen bond, forming COLmg@TA@nHA granular hydrogel. The size of COL microgels could be controlled via adjusting stirring speed. The larger COL microgels assembled granular hydrogel possessed higher porosity. While the smaller COL microgels assembled granular hydrogel was more stable, showing better self-healing ability in rheological test. Due to the dynamically reversible interactions, COLmg@TA@nHA granular hydrogel was injectable, which could be applied to the skin wound, exhibiting the ability to inhibit inflammatory response, while enhance α-SMA expression, promoting wound healing. The method to fabricate granular hydrogel introduced in this study has a broad scalability toward repairing various tissues.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85594400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of poloxamer based besifloxacin thermosensitive in situ gelling nanoemulsions for ophthalmic delivery 波洛沙姆基贝西沙星热敏原位胶凝纳米乳的制备
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2023-04-24 DOI: 10.1177/08839115231167587
S. N. Kassaee, A. Nili-Ahmadabadi, Mohammad Mehdi Mahboobian
{"title":"Fabrication of poloxamer based besifloxacin thermosensitive in situ gelling nanoemulsions for ophthalmic delivery","authors":"S. N. Kassaee, A. Nili-Ahmadabadi, Mohammad Mehdi Mahboobian","doi":"10.1177/08839115231167587","DOIUrl":"https://doi.org/10.1177/08839115231167587","url":null,"abstract":"The present study aimed to develop and investigate besifloxacin (BSF) in situ gel nanoemulsions (NEs) consisting of two hydrophilic polymers, that is, poloxamer 407 (P407) and poloxamer 188 (P188), for ocular delivery. BSF loaded in situ gel-NEs containing triacetin (oil), Cremophor®RH 40 (surfactant), Transcutol®P (co-surfactant), poloxamer 407 and poloxamer 188 (gelling agents) were prepared by spontaneous emulsification method. The optimum in situ gel nanoemulsion was selected based on gelation temperature. The selected formulation was evaluated for physicochemical characteristics, including droplet size, refractive index, pH, transparency, and viscosity. Further investigations such as in vitro drug release, ex vivo corneal permeation, HET-CAM, pre-corneal residence time antibacterial efficacy studies were conducted too. Developed BSF in situ gel nanoemulsion showed acceptable physicochemical properties with a nano-metric droplet size of 19 nm and PDI of 0.21. Moreover, In vitro release studies revealed that the in situ gel formulation could sustain drug release as only 40% of the BSF was released within 1 h. Permeability coefficient (Papp) of BSF through the excised bovine cornea was found 6.01 × 10−6 cm/s during 6 h. In addition, the HET-CAM evaluation confirmed the non-irritancy of the optimum BSF in situ gel NEs. The pre-corneal residence time evaluation indicated prolonged retention of in situ gel-NEs on the eye surface. Finally, antibacterial susceptibility investigations illustrated remarkable efficacy against Pseudomonas aeruginosa and Staphylococcus aureus. The current findings demonstrated that this proposed BSF-loaded in situ gel-NEs could be considered as a potential novel drug delivery formulation against ophthalmic bacterial infections.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75058965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication, optimization and cytotoxicity assessment of Ganoderma lucidum Triterpenoid-loaded electrospun gelatin nanofiber membrane as potential skin patch 三萜类灵芝凝胶纳米纤维膜的制备、优化及细胞毒性评价
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2023-04-07 DOI: 10.1177/08839115231162364
Fahimeh Nojoki, A. Hatamian-Zarmi, B. Ebrahimi-Hosseinzadeh, H. Alvandi, Khadijeh Khezri, Nafiseh Dabbaghi, Mohammad Mir-derikvand, Fariba Malekpour Galougahi
{"title":"Fabrication, optimization and cytotoxicity assessment of Ganoderma lucidum Triterpenoid-loaded electrospun gelatin nanofiber membrane as potential skin patch","authors":"Fahimeh Nojoki, A. Hatamian-Zarmi, B. Ebrahimi-Hosseinzadeh, H. Alvandi, Khadijeh Khezri, Nafiseh Dabbaghi, Mohammad Mir-derikvand, Fariba Malekpour Galougahi","doi":"10.1177/08839115231162364","DOIUrl":"https://doi.org/10.1177/08839115231162364","url":null,"abstract":"Ganoderma lucidum triterpenoids (GLT) have shown special anti-tumor effects, but due to low yields and their hydrophobic structure, they have not found much clinical application. Box Behnken Design (BBD) developed a formulation to optimize the effective parameters in encapsulating GLT. Then, Gelatin nanofibers were characterized by SEM, 1H-NMR, and FTIR. Finally, the GLT release kinetics and GLT nanofibers cytotoxicity was studied. BBD shows the best values obtained are the solvent ratio of 11.5%, gelatin concentration of 22%, and voltage of 20 kV which were validated by an experimental assay. The results showed that the positively charged ionic groups present on the surface of gelatin adsorbed the carboxyl groups in GLT and the magnetic fields created by their nucleus influenced each other. Finally, GLT nanofibers with an average size distribution of 75.4 nm were observed. The result showed an efficiency of 75% for drug entrapment. The release kinetics demonstrated a sustained release of GLT follows the Korsmeyer-Peppas model that suggests a combination of surface drug dissolution and quasi-Fickian diffusion. Also, GLT nanofibers showed a higher cytotoxic activity against MCF-7 cell lines than free GLT. The generated model suggests a new approach to prediction and experimental nanofibers.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84538228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrospun bio-nano hybrid scaffold from collagen, Nigella sativa, and chitosan for skin tissue engineering application 胶原、黑皮、壳聚糖电纺生物纳米复合支架在皮肤组织工程中的应用
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2023-03-30 DOI: 10.1177/08839115231162365
Md Rubel Alam, Md. Abdus Shahid, S. Alimuzzaman, Md. Mehedi Hasan, Md. Enamul Hoque
{"title":"Electrospun bio-nano hybrid scaffold from collagen, Nigella sativa, and chitosan for skin tissue engineering application","authors":"Md Rubel Alam, Md. Abdus Shahid, S. Alimuzzaman, Md. Mehedi Hasan, Md. Enamul Hoque","doi":"10.1177/08839115231162365","DOIUrl":"https://doi.org/10.1177/08839115231162365","url":null,"abstract":"The new sophisticated tissue engineering focused on producing nanocomposite with different morphologies for rapid tissue regeneration. In this case, utilizing nanotechnology with the incorporation of bio-based materials have achieved the interest of researchers. This research aims at developing hybrid bio-nano scaffold with collagen (Col), Nigella sativa (Ns), and chitosan (Cs) by a bi-layered green electrospinning on polyvinyl chloride (PVA) layer in a different ratio for tissue regeneration. Field emission electron microscopy (FE-SEM), fourier transform infrared spectroscopy (FTIR), moisture management properties, tensile properties, antibacterial activity, and wound healing assessment of the fabricated hybrid bio-nano scaffolds were employed to investigate the different properties of hybrid bio-nano scaffolds. The results exhibit that the sample with Col (50%) and Ns (25%), Cs (25%) has good fiber formation with a mean diameter of 381 ± 22 nm. This bio-nano scaffold has a porosity of 78 ± 6.9% and a fast absorbing-slow drying nature for providing a moist environment. The antibacterial zones of inhibition (ZOI) against Staphylococcus aureus and Escherichia coli were 10 ± 1.3 and 8 ± 0.9 mm respectively, and appeared to be adequate to inhibit bacterial action. The wound healing assessment states that 84 ± 3.8% of wound closure occurs in just 10 days, which is quicker (1.5 times) than the duration of a commercial bandage. All of the findings suggest that the bio-nano scaffold could be useful for skin tissue engineering.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78690835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Pluronic-phosphatidylcholine mixed polymeric nanomicellar formulation for curcumin drug bioavailability: Design, fabrication, characterization and in vitro bioinvestigations 用于姜黄素药物生物利用度的pluronic -磷脂酰胆碱混合聚合物纳米束制剂:设计、制造、表征和体外生物研究
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2023-03-17 DOI: 10.1177/08839115231157098
Hemil S. Patel, Anju P. Kunjadiya, A. Rahdar, Rakesh K. Sharma
{"title":"Pluronic-phosphatidylcholine mixed polymeric nanomicellar formulation for curcumin drug bioavailability: Design, fabrication, characterization and in vitro bioinvestigations","authors":"Hemil S. Patel, Anju P. Kunjadiya, A. Rahdar, Rakesh K. Sharma","doi":"10.1177/08839115231157098","DOIUrl":"https://doi.org/10.1177/08839115231157098","url":null,"abstract":"Curcumin (CUR), obtained from turmeric, has biological advantages, but low aqueous solubility restricts its pharmaceutical applications. In the present work, a mixed polymeric nanomicellar formulation composed of bioactive Pluronic P123, Pluronic F68, and biocompatible phosphatidylcholine (PC) was designed and examined as the nanovehicles for overcoming the major barriers of poor bioavailability related to CUR. The CUR-incorporated P123/F68/PC mixed nanomicellar formulation (CUR-PFPC) was fabricated by the thin film technique and investigated in vitro. The fabrication of CUR-PFPC was optimized through D-optimal design. CUR-PFPC morphology, size distribution, zeta potential, drug encapsulating and incorporation efficiency, compatibility, and crystallinity were characterized using DLS, TEM, FTIR, XRD, and DSC analysis. Moreover, the cumulative drug release, antioxidant assays, and antimicrobial properties of formulations were also examined. The CUR-PFPC formulation exhibited a micellar size of 67.43 nm, a zeta potential of −15.1 mV, a PDI of 0.528, and a spherical shape. The mixed micellar formulation showed excellent compatibility and stability. The in vitro release profile of the CUR-PFPC reached over 60% in comparison to the 95% release of CUR, indicating a slow and sustained release. The DPPH assay showed that the CUR-PFPC had 96% antioxidant activity. Results show that the CUR-PFPC has powerful antibacterial and antifungal properties, which separates it from the free CUR. These findings suggest that the fabricated CUR-PFPC mixed polymeric nanomicellar formulation is thermodynamically and kinetically stable and may be considered a novel nanovehicle for hydrophobic antimicrobial drugs like CUR. Graphical Abstract","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80277662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Encapsulation and antibacterial studies of goji berry and garlic extract in the biodegradable chitosan 枸杞、大蒜提取物在可生物降解壳聚糖中的包封及抑菌研究
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2023-03-14 DOI: 10.1177/08839115231157097
Gülay Baysal, Hatice Sena Olcay, Çağatay Günneç
{"title":"Encapsulation and antibacterial studies of goji berry and garlic extract in the biodegradable chitosan","authors":"Gülay Baysal, Hatice Sena Olcay, Çağatay Günneç","doi":"10.1177/08839115231157097","DOIUrl":"https://doi.org/10.1177/08839115231157097","url":null,"abstract":"As known, the chitosan is a biodegradable biopolymer with antibacterial properties, therefore it is used in the fields of pharmacy, medical, wastewater treatment, biotechnology, cosmetics, textiles, and agriculture. Apart from these, the chitosan has an important place in the food industry with its widespread use. In this research article, the chitosan were encapsulated with the taurine and garlic extracts by the spray dryer. The CSA and CSB compounds synthesized as final products were analyzed by Fourier transformed infrared spectroscopy (FTIR) and High Performance Liquid Chromatography (HPLC). The effect of the encapsulation process on the molecular weight of the polymer structure was investigated using the cryoscopy method. The compound CSA represents 1/2 encapsulation of chitosan with taurine and increased garlic extracts, respectively, while CSB represents 1/1 encapsulation of chitosan with increased taurine and fixed garlic extracts. The % antioxidant activity of the final products was determined by DDPH method. The inhibition zone and surface activity proporties of the CSA and CSB were carried out against Listeria monocytogenes, Staphylococcus aureus, E. coli, and Salmonella bacteria. The results obtained as a result of the analyzes were evaluated, and optimum values were determined for use in food packaging.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88622891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Evaluation of triacetin on mechanical strength and free surface energy of PHBHHx: The prevention of intra-abdominal adhesion 三乙酸乙酯对PHBHHx的机械强度和自由表面能的评价:防止腹腔粘连
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2023-03-13 DOI: 10.1177/08839115221149726
Meryem Akkurt Yıldırım, M. Demirbilek, K. Kızılbey, Engin Kaplan, N. Türkoğlu
{"title":"Evaluation of triacetin on mechanical strength and free surface energy of PHBHHx: The prevention of intra-abdominal adhesion","authors":"Meryem Akkurt Yıldırım, M. Demirbilek, K. Kızılbey, Engin Kaplan, N. Türkoğlu","doi":"10.1177/08839115221149726","DOIUrl":"https://doi.org/10.1177/08839115221149726","url":null,"abstract":"Several polymers are used for the preparation of biomaterials as membranes and films for tissue engineering applications. The most common plasticizer is PEG to obtain polymer-based biomaterials. On the other hand, triacetin is a non-toxic, FDA-approved plasticizer mostly used in the food industry. In this study, we used triacetin as a plasticizer to obtain hydrophobic membranes for the prevention of intra-abdominal adhesion. We selected a well-known polymer named PHBHHx which is a bacterial polyester generally used as supporting material for cell attachments in regenerative tissue applications. We evaluated the triacetin as a plasticizer and its effect on mechanical, thermal, surface area, pore size, and surface energy. The hydrophobic/hydrophilic contrast of a biomaterial surface determines the biological response. Surface hydrophobicity is critical for the cellular response. The contact angle tests of PHBHHx revealed that the hydrophilicity of the membrane was decreased following triacetin blending. Modification of the PHBHHx membrane by blending with triacetin caused a significant decrease in cell adhesion. The cell attachment rates of PHBHHx membranes were as 95 ± 5% on the first day, 34.5 ± 0.9% on third day, and 23 ± 1.5% on the fifth day, respectively. The rates of cell attachments on PHBHHx/triacetin membranes were determined as 79 ± 2.5% for the first day, 33 ± 2.7% for the third day, and 13 ± 2.1% for the fifth day, respectively. Besides, triacetin blending decreased the surface area from 38.790 to 32.379 m2/g. The elongation at breaks was observed as 128% for PHBHHx and 171% for PHBHHx/triacetin. Graphical abstract","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77497704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Development of a three-dimensional in vitro blood-brain barrier using the chitosan-alginate polyelectrolyte complex as the extracellular matrix 壳聚糖-海藻酸盐多电解质复合物作为细胞外基质的体外三维血脑屏障的研制
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2023-03-13 DOI: 10.1177/08839115231157096
Ece Bayir
{"title":"Development of a three-dimensional in vitro blood-brain barrier using the chitosan-alginate polyelectrolyte complex as the extracellular matrix","authors":"Ece Bayir","doi":"10.1177/08839115231157096","DOIUrl":"https://doi.org/10.1177/08839115231157096","url":null,"abstract":"Polyelectrolyte complexes (PECs) consist of a spontaneous assembly of oppositely charged polysaccharides. PECs can be used to obtain a hydrogel tissue scaffold in tissue culture. In this study, it is aimed to use PEC as a blood-brain barrier (BBB) model scaffold. By mixing polycationic chitosan and polyanionic alginate solutions at a certain ratio it was obtained a 3D hydrogel scaffold and mimicked in vivo environment of the tissue. The PEC hydrogel scaffold’s chemical, physical, and mechanical characterizations were performed with FTIR, DSC, DMA, and Micro-CT analyses. In order to develop an in vitro BBB model, the human neuroblastoma cell line (SH-SY5Y) and mouse astrocyte cell line (C8-D1A) were mixed into a hydrogel, which is the abluminal side of the BBB. Human microvascular endothelial cells (HBEC-5i) were seeded on the hydrogel, and it was aimed to mimic the luminal side of the BBB. The characterization of the BBB model was determined by measuring the TEER, observation of the cell morphology with SEM, performing the permeability of Lucifer Yellow, and observation of tight junction proteins with immunofluorescence staining. As a result, HBEC-5i cells expressed tight junction proteins (ZO-1 and Claudin-5), showed TEER of 340 ± 22 Ω.cm2, and the Lucifer Yellow permeability of 7.4 × 10−7 ± 2.7 × 10−7 cm/s, which was suitable for use as an in vitro BBB model. Using a hydrogel PEC composed of chitosan and alginate as an extracellular matrix increased the direct interaction of endothelial cells, astrocytes, and neurons with each other and thus obtained a much less permeable model compared to other standard transwell models. Graphical abstract","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85360366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Natural rubber latex films with effective growth inhibition against S. aureus via surface conjugated gentamicin 表面共轭庆大霉素有效抑制金黄色葡萄球菌生长的天然胶乳膜
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2023-03-06 DOI: 10.1177/08839115231153823
Aswin Arakkal, P. Sirajunnisa, G. Sailaja
{"title":"Natural rubber latex films with effective growth inhibition against S. aureus via surface conjugated gentamicin","authors":"Aswin Arakkal, P. Sirajunnisa, G. Sailaja","doi":"10.1177/08839115231153823","DOIUrl":"https://doi.org/10.1177/08839115231153823","url":null,"abstract":"Hospital-associated infections and related complications are of extreme concern in the healthcare sector since biofilms generated over material surfaces not only create turbulence in the healthcare practices followed but also ruin the device performance, and increased medication, leading to significant chances of drug resistance. Natural rubber latex (NRL) being the first choice for the manufacture of several conventional biomedical devices, it is essential to ensure the surfaces of the same are inherently inactive against most microorganisms. This study presents NRL film surface conjugated with a well-known antibiotic, gentamicin through an amide linkage to generate antibacterial activity to the surface with a significant growth inhibition rate, especially against Staphylococcus aureus. The NRL films were surface-oxidized under controlled acidic conditions to generate carboxyl groups exploring the unsaturation of the base monomer unit. The carboxyl group reacts with the amine groups of gentamicin facilitating its surface conjugation. The surface anchoring was authenticated by FTIR-ATR complimented further by contact angle measurement as a function of hydrophilicity and elemental analysis by EDX spectroscopy. The antibacterial efficacy of modified NRL films was evaluated using antibacterial drop test and the results indicated a substantial growth inhibition rate (>60%) against Pseudomonas aeruginosa and Staphylococcus aureus. The study could be further optimized and proposed as a viable route for the conjugation of active molecules over inert polymer molecules.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76718169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current status of hemostatic agents, their mechanism of action, and future directions 止血药物的现状、作用机制及未来发展方向
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2023-02-22 DOI: 10.1177/08839115221147935
Ritvesh Gupta, Sibanwita Mohanty, D. Verma
{"title":"Current status of hemostatic agents, their mechanism of action, and future directions","authors":"Ritvesh Gupta, Sibanwita Mohanty, D. Verma","doi":"10.1177/08839115221147935","DOIUrl":"https://doi.org/10.1177/08839115221147935","url":null,"abstract":"The bleeding problem might seem straightforward, but it involves a plethora of complex biochemical pathways and responses. Hemorrhage control remains one of the leading causes of “preventable deaths” worldwide. The past few decades have seen a wide range of biomaterials and their derivatives targeted to serve as hemostatic agents, but none can be deemed as an ideal solution. In this review, we have highlighted the current diversity in hemostatic agents and their modalities. We have enclosed a comprehensive outlook of the proposed solutions and their clinical performance so far. In addition to these, several promising compositions are still in their infancy or developmental phases. The inclusion of novel upcoming nanocomposites has further widened the potencies of existing formulations as well.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80070831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信