Journal of applied glycoscience最新文献

筛选
英文 中文
Effects of Glycogen on Ceramide Production in Cultured Human Keratinocytes via Acid Sphingomyelinase Activation. 糖原通过激活酸性鞘磷脂酶对培养的人角化细胞神经酰胺生成的影响。
IF 1.1
Journal of applied glycoscience Pub Date : 2021-06-11 eCollection Date: 2021-01-01 DOI: 10.5458/jag.jag.JAG-2020_0012
Hiroko Yatsuhashi, Takashi Furuyashiki, Phuong Hong Thi Vo, Hiroshi Kamasaka, Takashi Kuriki
{"title":"Effects of Glycogen on Ceramide Production in Cultured Human Keratinocytes via Acid Sphingomyelinase Activation.","authors":"Hiroko Yatsuhashi,&nbsp;Takashi Furuyashiki,&nbsp;Phuong Hong Thi Vo,&nbsp;Hiroshi Kamasaka,&nbsp;Takashi Kuriki","doi":"10.5458/jag.jag.JAG-2020_0012","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2020_0012","url":null,"abstract":"<p><p>Glycogen is a highly branched storage polysaccharide found mainly in the liver and the muscles. Glycogen is also present in the skin, but its functional role is poorly understood. Recently, it has been reported that glycogen plays an important role in intracellular signal transduction. In the epidermis of the skin, keratinocytes are the predominant cells that produce ceramide. Ceramides are lipids composed of sphingosine, and prevent water loss, as well as protecting the skin against environmental stressors. In this study, we investigated the effects of glycogen on ceramide production in cultured keratinocytes. Thin-layer chromatography revealed that incubation of keratinocytes with 2 % glycogen enhanced the cellular amount of ceramide NS (ceramide 2) by 3.4-fold compared to the control. We also found that glycogen regulated the mRNA expression levels of signaling molecules of the sphingomyelin-ceramide pathway by quantitative real-time PCR. The activity of sphingomyelinase was also significantly enhanced by 2.5-fold in cultures with 1 % glycogen compared to the control. Moreover, glycogen increased the ATP production by 1.5-fold compared to the control, while glucose did not affect the production. Western blotting showed that phosphorylation of Akt, a cellular signaling molecule, was inhibited in the presence of glycogen in cultured keratinocytes. This study shows that glycogen upregulates the ceramide production pathway from sphingomyelin in epidermal keratinocytes, and provides new insights into the role of glycogen in cellular signal transduction.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"68 2","pages":"41-46"},"PeriodicalIF":1.1,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/60/03/JAG-68-041.PMC8367632.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39341347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Chondroitin Sulfate Chain of Urinary Trypsin Inhibitor Enhances Protease Inhibitory Activity of the Core Protein. 尿胰蛋白酶抑制剂硫酸软骨素链增强核心蛋白的蛋白酶抑制活性。
IF 1.1
Journal of applied glycoscience Pub Date : 2021-05-20 eCollection Date: 2020-01-01 DOI: 10.5458/jag.jag.JAG-2019_0021
Yu Teshigahara, Ikuko Kakizaki, Wataru Hirao, Kanji Tanaka, Ryoki Takahashi
{"title":"A Chondroitin Sulfate Chain of Urinary Trypsin Inhibitor Enhances Protease Inhibitory Activity of the Core Protein.","authors":"Yu Teshigahara,&nbsp;Ikuko Kakizaki,&nbsp;Wataru Hirao,&nbsp;Kanji Tanaka,&nbsp;Ryoki Takahashi","doi":"10.5458/jag.jag.JAG-2019_0021","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2019_0021","url":null,"abstract":"<p><p>Human urinary trypsin inhibitor (UTI) is a proteoglycan composed of one core protein covalently linked to one glycosaminoglycan, which is a low sulfated chondroitin 4-sulfate. It is used as an anti-inflammatory medicine based on the protease inhibitory activity of the core protein. However, functions of the chondroitin sulfate have not been clarified. Recently, we succeeded in remodeling the UTI chondroitin sulfate to hyaluronan to create hyaluronan hybrid UTI, without changing the core protein. Here, we investigated the effect of the remodeled chondroitin sulfate on the activities of serine proteases. Native UTI showed stronger protease inhibitory activity than hyaluronan hybrid UTI or hydrolyzed glycosaminoglycan UTI. Chondroitin 4-sulfate chains with a small peptide derived from the native UTI did not show any protease inhibitory activity. These results suggest that the chondroitin sulfate chain linked covalently to core protein enhances protease inhibitor activity of UTI although the chondroitin sulfate chain itself does not.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"67 2","pages":"63-66"},"PeriodicalIF":1.1,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2019_0021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39282084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Structure and Properties of Starch in Rice Double Mutants Lacking Starch Synthase (SS) IIa and Starch Branching Enzyme (BE) IIb. 缺乏淀粉合酶(SS) IIa和淀粉分支酶(BE) IIb的水稻双突变体的淀粉结构和特性
IF 1.1
Journal of applied glycoscience Pub Date : 2021-04-30 eCollection Date: 2021-01-01 DOI: 10.5458/jag.jag.JAG-2021_0002
Tamami Ida, Naoko Crofts, Satoko Miura, Ryo Matsushima, Naoko Fujita
{"title":"Structure and Properties of Starch in Rice Double Mutants Lacking Starch Synthase (SS) IIa and Starch Branching Enzyme (BE) IIb.","authors":"Tamami Ida,&nbsp;Naoko Crofts,&nbsp;Satoko Miura,&nbsp;Ryo Matsushima,&nbsp;Naoko Fujita","doi":"10.5458/jag.jag.JAG-2021_0002","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2021_0002","url":null,"abstract":"<p><p>Starch biosynthetic enzymes form multi-protein complexes consisting of starch synthase (SS) I, SSIIa, and starch branching enzyme (BE) IIb, which synthesize amylopectin clusters. This study analyzed the starch properties in two double mutant rice lines lacking SSIIa and BEIIb, one of which expressed an inactive BEIIb protein. The <i>ss2a be2b</i> lines showed similar or greater seed weight than the <i>be2b</i> lines, and plant growth was not affected. The <i>ss2a</i> line showed increased short amylopectin chains resulting in a lower gelatinization temperature. Starch granule morphology and A-type crystallinity were similar between the <i>ss2a</i> line and the wild type, except for a mild chalky seed phenotype in the <i>ss2a</i> line. However, the starch phenotype of the <i>ss2a be2b</i> lines, which was similar to that of <i>be2b</i> but not <i>ss2a</i>, was characterized by increased long amylopectin chains, abnormal starch granules, and B-type crystallinity. The similarity in phenotype between the <i>ss2a be2b</i> and <i>be2b</i> lines may be attributed to the inability of the <i>be2b</i> mutants to generate short amylopectin branches, which serve as primers for SSIIa. Therefore, the presence or absence of SSIIa hardly affected the amylopectin structure under the <i>be2b</i> background. The amylose content was significantly higher in the <i>ss2a be2b</i> lines than in the <i>be2b</i> lines. Starch crystallinity was greater in <i>ss2a be2b</i> lines than in <i>be2b</i> lines, despite the fact that starch crystallinity is generally negatively correlated with amylose content. This suggests that the formation of a double helix between long amylopectin chains and amylose affects starch crystallinity in the <i>ss2a be2b</i> mutants.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"68 2","pages":"31-39"},"PeriodicalIF":1.1,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2f/6a/JAG-68-031.PMC8367641.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39354578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Role of Tryptophan 38 in Loading Substrate Chain into the Active-site Tunnel of Cellobiohydrolase I from Trichoderma reesei. 色氨酸38在里氏木霉纤维生物水解酶I活性位点通道内底物链加载中的作用。
IF 1.1
Journal of applied glycoscience Pub Date : 2021-03-11 eCollection Date: 2021-01-01 DOI: 10.5458/jag.jag.JAG-2020_0014
Akihiko Nakamura, Takashi Kanazawa, Tadaomi Furuta, Minoru Sakurai, Markku Saloheimo, Masahiro Samejima, Anu Koivula, Kiyohiko Igarashi
{"title":"Role of Tryptophan 38 in Loading Substrate Chain into the Active-site Tunnel of Cellobiohydrolase I from <i>Trichoderma reesei</i>.","authors":"Akihiko Nakamura,&nbsp;Takashi Kanazawa,&nbsp;Tadaomi Furuta,&nbsp;Minoru Sakurai,&nbsp;Markku Saloheimo,&nbsp;Masahiro Samejima,&nbsp;Anu Koivula,&nbsp;Kiyohiko Igarashi","doi":"10.5458/jag.jag.JAG-2020_0014","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2020_0014","url":null,"abstract":"<p><p>Cellobiohydrolase I from <i>Trichoderma reesei</i> ( <i>Tr</i> Cel7A) is one of the best-studied cellulases, exhibiting high activity towards crystalline cellulose. Tryptophan residues at subsites -7 and -4 (Trp40 and Trp38 respectively) are located at the entrance and middle of the tunnel-like active site of <i>Tr</i> Cel7A, and are conserved among the GH family 7 cellobiohydrolases. Trp40 of <i>Tr</i> Cel7A is important for the recruitment of cellulose chain ends on the substrate surface, but the role of Trp38 is less clear. Comparison of the effects of W38A and W40A mutations on the binding energies of sugar units at the two subsites indicated that the contribution of Trp38 to the binding was greater than that of Trp40. In addition, the smooth gradient of binding energy was broken in W38A mutant. To clarify the importance of Trp38, the activities of <i>Tr</i> Cel7A WT and W38A towards crystalline cellulose and amorphous cellulose were compared. W38A was more active than WT towards amorphous cellulose, whereas its activity towards crystalline cellulose was only one-tenth of that of WT. To quantify the effect of mutation at subsite -4, we measured kinetic parameters of <i>Tr</i> Cel7A WT, W40A and W38A towards cello-oligosaccharides. All combinations of enzymes and substrates showed substrate inhibition, and comparison of the inhibition constants showed that the Trp38 residue increases the velocity of substrate intake ( <i>k</i> <sub>on</sub> for forming productive complex) from the minus side of the subsites. These results indicate a key role of Trp38 residue in processively loading the reducing-end of cellulose chain into the catalytic tunnel.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"68 1","pages":"19-29"},"PeriodicalIF":1.1,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8f/e8/JAG-68-14.PMC8116176.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Innovative Preparation of Biopharmaceuticals Using Transglycosylation Activity of Microbial Endoglycosidases. 利用微生物内糖苷酶的转糖基化活性创新制备生物药物。
IF 1.1
Journal of applied glycoscience Pub Date : 2021-03-11 eCollection Date: 2021-01-01 DOI: 10.5458/jag.jag.JAG-2020_0013
Toshihiko Katoh, Kenji Yamamoto
{"title":"Innovative Preparation of Biopharmaceuticals Using Transglycosylation Activity of Microbial Endoglycosidases.","authors":"Toshihiko Katoh,&nbsp;Kenji Yamamoto","doi":"10.5458/jag.jag.JAG-2020_0013","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2020_0013","url":null,"abstract":"<p><p>Most functional biopharmaceuticals such as antibodies are glycoproteins carrying <i>N</i>-linked oligosaccharides (<i>N</i>-glycans). In animal cells, these glycans are generally expressed as heterogeneous glycoforms that are difficult to separate into a pure form. The structure of these glycans directly affects several biological aspects of the glycoproteins, especially binding affinity. Therefore, the preparation of glycoproteins with well-defined and homogeneous glycoforms is necessary for functional studies and improved efficacy, particularly for biopharmaceuticals. This review describes the recent remarkable progress in the development and production of biopharmaceutical glycan-modified antibodies, through the use of glycan remodeling using microbial endoglycosidases and sophisticated glycoengineering techniques utilizing microbial enzymatic reaction mechanisms.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"68 1","pages":"1-9"},"PeriodicalIF":1.1,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ea/5a/JAG-68-001.PMC8113915.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Xylanase from Marine Filamentous Fungus Pestalotiopsis sp. AN-7 Was Activated with Diluted Salt Solution Like Brackish Water. 用微咸水等稀释盐溶液对海洋丝状真菌拟盘多毛孢AN-7木聚糖酶进行活化。
IF 1.1
Journal of applied glycoscience Pub Date : 2021-03-04 eCollection Date: 2021-01-01 DOI: 10.5458/jag.jag.JAG-2020_0011
Sangho Koh, Masahiro Mizuno, Yuto Izuoka, Naoto Fujino, Naoko Hamada-Sato, Yoshihiko Amano
{"title":"Xylanase from Marine Filamentous Fungus <i>Pestalotiopsis</i> sp. AN-7 Was Activated with Diluted Salt Solution Like Brackish Water.","authors":"Sangho Koh,&nbsp;Masahiro Mizuno,&nbsp;Yuto Izuoka,&nbsp;Naoto Fujino,&nbsp;Naoko Hamada-Sato,&nbsp;Yoshihiko Amano","doi":"10.5458/jag.jag.JAG-2020_0011","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2020_0011","url":null,"abstract":"<p><p>The genus <i>Pestalotiopsis</i> are endophytic fungi that have recently been identified as cellulolytic system producers. We herein cloned a gene coding for a xylanase belonging to glycoside hydrolase (GH) family 10 (<i>Pes</i>Xyn10A) from <i>Pestalotiopsis</i> sp. AN-7, which was isolated from the soil of a mangrove forest. This protein was heterologously expressed by <i>Pichia pastoris</i> as a host, and its enzymatic properties were characterized. <i>Pes</i>Xyn10A was produced as a glycosylated protein and coincident to theoretical molecular weight (35.3 kDa) after deglycosylation by peptide-<i>NfF</i>-glycosidase F. Purified recombinant <i>Pes</i>Xyn10A exhibited maximal activity at pH 6.0 and 50 °C, and activity was maintained at 90 % at pH 5.0 and temperatures lower than 30 °C for 24 h. The substrate specificity of <i>Pes</i>Xyn10A was limited and it hydrolyzed glucuronoxylan and arabinoxylan, but not β-glucan. The final hydrolysis products from birchwood xylan were xylose, xylobiose, and 1,2<sup>3</sup>-α-D-(4-<i>O</i>-methyl-glucuronyl)-1,4-β-D-xylotriose. The addition of metallic salts (NaCl, KCl, MgCl<sub>2</sub>, and CaCl<sub>2</sub>) activated <i>Pes</i>Xyn10A for xylan degradation, and maximal activation by these divalent cations was approximately 160 % at a concentration of 5 mM. The thermostability of <i>Pes</i>Xyn10A significantly increased in the presence of 50 mM NaCl or 5 mM MgCl<sub>2</sub>. The present results suggest that the presence of metallic salts at a low concentration, similar to brackish water, exerts positive effects on the enzyme activity and thermal stability of <i>Pes</i>Xyn10A.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"68 1","pages":"11-18"},"PeriodicalIF":1.1,"publicationDate":"2021-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7e/b0/JAG-68-11.PMC8116177.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Enzymatic Synthesis and Structural Confirmation of Novel Oligosaccharide, D-Fructofuranose-linked Chitin Oligosaccharide. 新型寡糖d -呋喃醛酸连接几丁质寡糖的酶合成及结构证实。
IF 1.1
Journal of applied glycoscience Pub Date : 2020-11-20 eCollection Date: 2020-01-01 DOI: 10.5458/jag.jag.JAG-2020_0009
Hiroki Hosaka, Sayaka Shirai, Sora Fujita, Mitsuru Tashiro, Takako Hirano, Wataru Hakamata, Toshiyuki Nishio
{"title":"Enzymatic Synthesis and Structural Confirmation of Novel Oligosaccharide, D-Fructofuranose-linked Chitin Oligosaccharide.","authors":"Hiroki Hosaka,&nbsp;Sayaka Shirai,&nbsp;Sora Fujita,&nbsp;Mitsuru Tashiro,&nbsp;Takako Hirano,&nbsp;Wataru Hakamata,&nbsp;Toshiyuki Nishio","doi":"10.5458/jag.jag.JAG-2020_0009","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2020_0009","url":null,"abstract":"<p><p>Utilizing transglycosylation reaction catalyzed by β- <i>N</i> -acetylhexosaminidase of <i>Stenotrophomonas maltophilia</i> , β-D-fructofuranosyl-(2↔1)-α- <i>N</i> , <i>N</i> ´diacetylchitobioside (GlcNAc <sub>2</sub> -Fru) was synthesized from <i>N</i> -acetylsucrosamine and <i>N</i> , <i>N</i> ´-diacetylchitobiose (GlcNAc <sub>2</sub> ), and β-D-fructofuranosyl-(2↔1)-α- <i>N</i> , <i>N</i> ´, <i>N</i> ´´-triacetylchitotrioside (GlcNAc <sub>3</sub> -Fru) was synthesized from GlcNAc <sub>2</sub> -Fru and GlcNAc <sub>2</sub> . Through purification by charcoal column chromatography, pure GlcNAc <sub>2</sub> -Fru and GlcNAc <sub>3</sub> -Fru were obtained in molar yields of 33.0 % and 11.7 % from GlcNAc <sub>2</sub> , respectively. The structures of these oligosaccharides were confirmed by comparing instrumental analysis data of fragments obtained by enzymatic hydrolysis and acid hydrolysis of them with known data of these fragments.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"67 4","pages":"129-135"},"PeriodicalIF":1.1,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/cc/af/JAG-67-129.PMC8116863.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The Emi2 Protein of Saccharomyces cerevisiae is a Hexokinase Expressed under Glucose Limitation. 酿酒酵母的Emi2蛋白是一种在葡萄糖限制下表达的己糖激酶。
IF 1.1
Journal of applied glycoscience Pub Date : 2020-11-20 eCollection Date: 2020-01-01 DOI: 10.5458/jag.jag.JAG-2020_0007
Midori Umekawa, Kaito Hamada, Naoto Isono, Shuichi Karita
{"title":"The Emi2 Protein of <i>Saccharomyces cerevisiae</i> is a Hexokinase Expressed under Glucose Limitation.","authors":"Midori Umekawa,&nbsp;Kaito Hamada,&nbsp;Naoto Isono,&nbsp;Shuichi Karita","doi":"10.5458/jag.jag.JAG-2020_0007","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2020_0007","url":null,"abstract":"<p><p>Hexokinases catalyze glucose phosphorylation at the first step in glycolysis in eukaryotes. In the budding yeast <i>Saccharomyces cerevisiae</i> , three enzymes for glucose phosphorylation have long been known: Hxk1, Hxk2, and Glk1. In this study, we focus on Emi2, a previously uncharacterized hexokinase-like protein of <i>S. cerevisiae</i> . Our data show that the recombinant Emi2 protein (rEmi2), expressed in <i>Escherichia coli</i> , possesses glucose-phosphorylating activity in the presence of ATP and Mg <sup>2+</sup> . It was also found that rEmi2 phosphorylates not only glucose but also fructose, mannose and glucosamine <i>in vitro</i> . In addition, we examined changes in the level of endogenous Emi2 protein in <i>S. cerevisiae</i> in the presence or absence of glucose and a non-fermentable carbon source. We found that the expression of Emi2 protein is tightly suppressed during proliferation in high glucose, while it is strongly upregulated in response to glucose limitation and the presence of a non-fermentable carbon source. Our data suggest that the expression of the endogenous Emi2 protein in <i>S. cerevisiae</i> is regulated under the control of Hxk2 in response to glucose availability in the environment.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"67 4","pages":"103-109"},"PeriodicalIF":1.1,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0c/2a/JAG-67-103.PMC8119236.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Aqueous One-pot Synthesis of Glycopolymers by Glycosidase-catalyzed Glycomonomer Synthesis Using 4,6-Dimetoxy Triazinyl Glycoside Followed by Radical Polymerization. 利用 4,6-二甲氧基三嗪酰糖苷催化糖单体合成,然后进行自由基聚合,从而在水溶液中一步合成糖聚合物。
IF 1.1
Journal of applied glycoscience Pub Date : 2020-11-20 eCollection Date: 2020-01-01 DOI: 10.5458/jag.jag.JAG-2020_0010
Tomonari Tanaka, Ayane Matsuura, Yuji Aso, Hitomi Ohara
{"title":"Aqueous One-pot Synthesis of Glycopolymers by Glycosidase-catalyzed Glycomonomer Synthesis Using 4,6-Dimetoxy Triazinyl Glycoside Followed by Radical Polymerization.","authors":"Tomonari Tanaka, Ayane Matsuura, Yuji Aso, Hitomi Ohara","doi":"10.5458/jag.jag.JAG-2020_0010","DOIUrl":"10.5458/jag.jag.JAG-2020_0010","url":null,"abstract":"<p><p>Glycopolymers have attracted increased attention as functional polymeric materials, and simple methods for synthesizing glycopolymers remain needed. This paper reports the aqueous one-pot and chemoenzymatic synthesis of four types of glycopolymers via two reactions: the β-galactosidase-catalyzed glycomonomer synthesis using 4,6-dimetoxy triazinyl β-D-galactopyranoside and hydroxy group-containing (meth)acrylamide and (meth)acrylate derivatives as the activated glycosyl donor substrate and as the glycomonomer precursors, respectively, followed by radical copolymerization of the resulting glycomonomer and excess glycomonomer precursor without isolating the glycomonomers. The resulting glycopolymers bearing galactose moieties exhibited specific and strong interactions with the lectin peanut agglutinin as glycoclusters.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"67 4","pages":"119-127"},"PeriodicalIF":1.1,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/91/d2/JAG-67-119.PMC8116861.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Browning, Starch Gelatinization, Water Sorption, Glass Transition, and Caking Properties of Freeze-dried Maca ( Lepidium meyenii Walpers) Powders. 冷冻干燥玛卡(Lepidium meyenii Walpers)粉末的褐变、淀粉糊化、吸水性、玻璃化转变和结块特性。
IF 1.1
Journal of applied glycoscience Pub Date : 2020-11-20 eCollection Date: 2020-01-01 DOI: 10.5458/jag.jag.JAG-2020_0008
Alex Eduardo Alvino Granados, Kiyoshi Kawai
{"title":"Browning, Starch Gelatinization, Water Sorption, Glass Transition, and Caking Properties of Freeze-dried Maca ( <i>Lepidium meyenii</i> Walpers) Powders.","authors":"Alex Eduardo Alvino Granados, Kiyoshi Kawai","doi":"10.5458/jag.jag.JAG-2020_0008","DOIUrl":"10.5458/jag.jag.JAG-2020_0008","url":null,"abstract":"<p><p>The browning, gelatinization of starch, water sorption, glass transition, and caking properties of freeze-dried maca ( <i>Lepidium meyenii</i> Walpers) powders were investigated and compared with a commercial maca powder. The freeze-dried maca powders had lower optical density (browning) and higher enthalpy change for starch gelatinization than the commercial maca. This resulted from a difference in thermal history. The equilibrium water contents of the freeze-dried maca powders were higher than those of commercial maca at each water activity ( <i>a</i> <sub>w</sub> ) because of differences in amorphous part. The glass transition temperature ( <i>T</i> <sub>g</sub> ) was evaluated by differential scanning calorimetry. There was a negligible difference in the anhydrous <i>T</i> <sub>g</sub> (79.5-80.2 ºC) among the samples. The <i>T</i> <sub>g</sub> -depression of freeze-dried maca powders induced by water sorption was more gradual than that of the commercial maca due to a difference in water insoluble material content. From the results, critical water activity ( <i>a</i> <sub>wc</sub> ) was determined as the <i>a</i> <sub>w</sub> at which <i>T</i> <sub>g</sub> becomes 25 ºC. There was negligible caking below <i>a</i> <sub>w</sub> = 0.328. At higher <i>a</i> <sub>w</sub> , the degree of caking remarkably increased with a large variation depending on the samples. The degree of caking could be described uniformly as a function of <i>a</i> <sub>w</sub> / <i>a</i> <sub>wc</sub> . From these results, we propose an empirical approach to predict the caking of maca powders.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"67 4","pages":"111-117"},"PeriodicalIF":1.1,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6e/c2/JAG-67-111.PMC8116860.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信