{"title":"糊精葡聚糖酶从淀粉中提取的富含异麦芽糖的碳水化合物的体内消化率。","authors":"Eri Kokubo, Hirofumi Sonoki, Kenta Aizawa, Hiroki Takagi, Masayasu Takada, Ayako Ito, Yuki Nakazato, Yasuhiro Takeda, Kazuhiro Miyaji","doi":"10.5458/jag.jag.JAG-2021_0013","DOIUrl":null,"url":null,"abstract":"<p><p>Slowly digestible carbohydrates are needed for nutritional support in diabetic patients with malnutrition. They are a good source of energy and have the advantage that their consumption produces a low postprandial peak in blood glucose levels because they are slowly and completely digested in the small intestine. A high-amount isomaltomegalosaccharide containing carbohydrate (H-IMS), made from starch by dextrin dextranase, is a mixture of glucose polymers which has a continuous linear structure of α-1,6-glucosidic bonds and a small number of α-1,4-glucosidic bonds at the reducing ends. It has a broad degree of polymerization (DP) distribution with glucans of DP 10-30 as the major component. In our previous study, H-IMS has been shown to exhibit slow digestibility <i>in vitro</i> and not to raise postprandial blood glucose to such levels as that raised by dextrin <i>in vivo</i>. This marks it out as a potentially useful slowly digestible carbohydrate, and this study aimed to evaluate its <i>in vivo</i> digestibility. The amount of breath hydrogen emitted following oral administration of H-IMS was measured to determine whether any indigestible fraction passed through to and was fermented in the large intestine. Total carbohydrate in the feces was also measured. H-IMS, like glucose and dextrin, did not result in breath hydrogen excretion. Carbohydrate excretion with dietary H-IMS was no different from that of glucose or water. These results show that the H-IMS is completely digested and absorbed in the small intestine, indicating its potential as a slowly digestible carbohydrate in the diet of diabetic patients.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"69 3","pages":"57-63"},"PeriodicalIF":1.2000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7d/dd/69_jag.JAG-2021_0013.PMC9534827.pdf","citationCount":"0","resultStr":"{\"title\":\"<i>In Vivo</i> Digestibility of Carbohydrate Rich in Isomaltomegalosaccharide Produced from Starch by Dextrin Dextranase.\",\"authors\":\"Eri Kokubo, Hirofumi Sonoki, Kenta Aizawa, Hiroki Takagi, Masayasu Takada, Ayako Ito, Yuki Nakazato, Yasuhiro Takeda, Kazuhiro Miyaji\",\"doi\":\"10.5458/jag.jag.JAG-2021_0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Slowly digestible carbohydrates are needed for nutritional support in diabetic patients with malnutrition. They are a good source of energy and have the advantage that their consumption produces a low postprandial peak in blood glucose levels because they are slowly and completely digested in the small intestine. A high-amount isomaltomegalosaccharide containing carbohydrate (H-IMS), made from starch by dextrin dextranase, is a mixture of glucose polymers which has a continuous linear structure of α-1,6-glucosidic bonds and a small number of α-1,4-glucosidic bonds at the reducing ends. It has a broad degree of polymerization (DP) distribution with glucans of DP 10-30 as the major component. In our previous study, H-IMS has been shown to exhibit slow digestibility <i>in vitro</i> and not to raise postprandial blood glucose to such levels as that raised by dextrin <i>in vivo</i>. This marks it out as a potentially useful slowly digestible carbohydrate, and this study aimed to evaluate its <i>in vivo</i> digestibility. The amount of breath hydrogen emitted following oral administration of H-IMS was measured to determine whether any indigestible fraction passed through to and was fermented in the large intestine. Total carbohydrate in the feces was also measured. H-IMS, like glucose and dextrin, did not result in breath hydrogen excretion. Carbohydrate excretion with dietary H-IMS was no different from that of glucose or water. These results show that the H-IMS is completely digested and absorbed in the small intestine, indicating its potential as a slowly digestible carbohydrate in the diet of diabetic patients.</p>\",\"PeriodicalId\":14999,\"journal\":{\"name\":\"Journal of applied glycoscience\",\"volume\":\"69 3\",\"pages\":\"57-63\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7d/dd/69_jag.JAG-2021_0013.PMC9534827.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied glycoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5458/jag.jag.JAG-2021_0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied glycoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5458/jag.jag.JAG-2021_0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
In Vivo Digestibility of Carbohydrate Rich in Isomaltomegalosaccharide Produced from Starch by Dextrin Dextranase.
Slowly digestible carbohydrates are needed for nutritional support in diabetic patients with malnutrition. They are a good source of energy and have the advantage that their consumption produces a low postprandial peak in blood glucose levels because they are slowly and completely digested in the small intestine. A high-amount isomaltomegalosaccharide containing carbohydrate (H-IMS), made from starch by dextrin dextranase, is a mixture of glucose polymers which has a continuous linear structure of α-1,6-glucosidic bonds and a small number of α-1,4-glucosidic bonds at the reducing ends. It has a broad degree of polymerization (DP) distribution with glucans of DP 10-30 as the major component. In our previous study, H-IMS has been shown to exhibit slow digestibility in vitro and not to raise postprandial blood glucose to such levels as that raised by dextrin in vivo. This marks it out as a potentially useful slowly digestible carbohydrate, and this study aimed to evaluate its in vivo digestibility. The amount of breath hydrogen emitted following oral administration of H-IMS was measured to determine whether any indigestible fraction passed through to and was fermented in the large intestine. Total carbohydrate in the feces was also measured. H-IMS, like glucose and dextrin, did not result in breath hydrogen excretion. Carbohydrate excretion with dietary H-IMS was no different from that of glucose or water. These results show that the H-IMS is completely digested and absorbed in the small intestine, indicating its potential as a slowly digestible carbohydrate in the diet of diabetic patients.