Journal of Algebra最新文献

筛选
英文 中文
Extending structures for dendriform algebras 树枝状代数的扩展结构
IF 0.8 2区 数学
Journal of Algebra Pub Date : 2024-10-15 DOI: 10.1016/j.jalgebra.2024.09.025
Yuanyuan Zhang, Junwen Wang
{"title":"Extending structures for dendriform algebras","authors":"Yuanyuan Zhang,&nbsp;Junwen Wang","doi":"10.1016/j.jalgebra.2024.09.025","DOIUrl":"10.1016/j.jalgebra.2024.09.025","url":null,"abstract":"<div><div>In this paper, we devote to extending structures for dendriform algebras. First, we define extending datums and unified products of dendriform algebras, and theoretically solve the extending structure problem. As an application, we consider flag datums as a special case of extending structures, and give an example of the extending structure problem. Second, we apply matched pairs and bicrossed products of dendriform algebras and theoretically solve the factorization problem for dendriform algebras. Moreover, we also introduce cocycle semidirect products and nonabelian semidirect products as special cases of unified products. Finally, we define the deformation map on a dendriform extending structure (more general case), not necessary a matched pair, which is more practical in the classifying complements problem.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unramified Brauer group of quotient spaces by finite groups 有限群商数空间的非ramified Brauer 群
IF 0.8 2区 数学
Journal of Algebra Pub Date : 2024-10-15 DOI: 10.1016/j.jalgebra.2024.10.006
Andrew Kresch , Yuri Tschinkel
{"title":"Unramified Brauer group of quotient spaces by finite groups","authors":"Andrew Kresch ,&nbsp;Yuri Tschinkel","doi":"10.1016/j.jalgebra.2024.10.006","DOIUrl":"10.1016/j.jalgebra.2024.10.006","url":null,"abstract":"<div><div>We give a general procedure to determine the unramified Brauer group of quotients of rational varieties by finite groups.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Noncommutative differential geometry on crossed product algebras 交叉积代数上的非交换微分几何
IF 0.8 2区 数学
Journal of Algebra Pub Date : 2024-10-15 DOI: 10.1016/j.jalgebra.2024.10.007
Andrea Sciandra , Thomas Weber
{"title":"Noncommutative differential geometry on crossed product algebras","authors":"Andrea Sciandra ,&nbsp;Thomas Weber","doi":"10.1016/j.jalgebra.2024.10.007","DOIUrl":"10.1016/j.jalgebra.2024.10.007","url":null,"abstract":"<div><div>We provide a differential structure on arbitrary cleft extensions <span><math><mi>B</mi><mo>:</mo><mo>=</mo><msup><mrow><mi>A</mi></mrow><mrow><mrow><mi>co</mi></mrow><mi>H</mi></mrow></msup><mo>⊆</mo><mi>A</mi></math></span> for an <em>H</em>-comodule algebra <em>A</em>. This is achieved by constructing a covariant calculus on the corresponding crossed product algebra <span><math><mi>B</mi><msub><mrow><mi>#</mi></mrow><mrow><mi>σ</mi></mrow></msub><mi>H</mi></math></span> from the data of a bicovariant calculus on the structure Hopf algebra <em>H</em> and a calculus on the base algebra <em>B</em>, which is compatible with the 2-cocycle and measure of the crossed product. The result is a quantum principal bundle with canonical strong connection and we describe the induced bimodule covariant derivatives on associated bundles of the crossed product. All results specialize to trivial extensions and smash product algebras <em>B</em>#<em>H</em> and we give a characterization of the smash product calculus in terms of the differentials of the cleaving map <span><math><mi>j</mi><mo>:</mo><mi>H</mi><mo>→</mo><mi>A</mi></math></span> and the inclusion <span><math><mi>B</mi><mo>↪</mo><mi>A</mi></math></span>. The construction is exemplified for pointed Hopf algebras. In particular, the case of Radford Hopf algebras <span><math><msub><mrow><mi>H</mi></mrow><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></msub></math></span> is spelled out in detail.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Invariants of r-spin TQFTs and non-semisimplicity r-自旋 TQFT 的不变式与非半简性
IF 0.8 2区 数学
Journal of Algebra Pub Date : 2024-10-15 DOI: 10.1016/j.jalgebra.2024.08.039
Nils Carqueville , Ehud Meir , Lóránt Szegedy
{"title":"Invariants of r-spin TQFTs and non-semisimplicity","authors":"Nils Carqueville ,&nbsp;Ehud Meir ,&nbsp;Lóránt Szegedy","doi":"10.1016/j.jalgebra.2024.08.039","DOIUrl":"10.1016/j.jalgebra.2024.08.039","url":null,"abstract":"<div><div>For a positive integer <em>r</em>, an <em>r</em>-spin topological quantum field theory is a 2-dimensional TQFT with tangential structure given by the <em>r</em>-fold cover of <span><math><msub><mrow><mi>SO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. In particular, such a TQFT assigns a scalar invariant to every closed <em>r</em>-spin surface Σ. Given a sequence of scalars indexed by the set of diffeomorphism classes of all such Σ, we construct a symmetric monoidal category <span><math><mi>C</mi></math></span> and a <span><math><mi>C</mi></math></span>-valued <em>r</em>-spin TQFT which reproduces the given sequence. We also determine when such a sequence arises from a TQFT valued in an abelian category with finite-dimensional Hom spaces. In particular, we construct TQFTs with values in super vector spaces that can distinguish all diffeomorphism classes of <em>r</em>-spin surfaces, and we show that the Frobenius algebras associated to such TQFTs are necessarily non-semisimple.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subalgebras of octonion algebras 八元数子代数
IF 0.8 2区 数学
Journal of Algebra Pub Date : 2024-10-11 DOI: 10.1016/j.jalgebra.2024.10.004
Norbert Knarr, Markus J. Stroppel
{"title":"Subalgebras of octonion algebras","authors":"Norbert Knarr,&nbsp;Markus J. Stroppel","doi":"10.1016/j.jalgebra.2024.10.004","DOIUrl":"10.1016/j.jalgebra.2024.10.004","url":null,"abstract":"<div><div>For an arbitrary unitary octonion algebra, we determine all subalgebras. It turns out that every subalgebra of dimension less than four is associative, while every subalgebra of dimension greater than four is not associative. In any split octonion algebra, there are both associative and non-associative subalgebras of dimension four. Except for one-dimensional subalgebras spanned by idempotents, any two isomorphic subalgebras are in the same orbit under automorphisms.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relative monadicity 相对单一性
IF 0.8 2区 数学
Journal of Algebra Pub Date : 2024-10-11 DOI: 10.1016/j.jalgebra.2024.08.040
Nathanael Arkor , Dylan McDermott
{"title":"Relative monadicity","authors":"Nathanael Arkor ,&nbsp;Dylan McDermott","doi":"10.1016/j.jalgebra.2024.08.040","DOIUrl":"10.1016/j.jalgebra.2024.08.040","url":null,"abstract":"<div><div>We establish a relative monadicity theorem for relative monads with dense roots in a virtual equipment, specialising to a relative monadicity theorem for enriched relative monads. In particular, for a dense <figure><img></figure>-functor <span><math><mi>j</mi><mo>:</mo><mi>A</mi><mo>→</mo><mi>E</mi></math></span>, a <figure><img></figure>-functor <span><math><mi>r</mi><mo>:</mo><mi>D</mi><mo>→</mo><mi>E</mi></math></span> is <em>j</em>-monadic if and only if <em>r</em> admits a left <em>j</em>-relative adjoint and creates <em>j</em>-absolute colimits. This provides a refinement of the classical monadicity theorem – characterising those categories whose objects are given by those of <em>E</em> equipped with algebraic structure – in which the arities of the algebraic operations are valued in <em>A</em>. In particular, when <span><math><mi>j</mi><mo>=</mo><mn>1</mn></math></span>, we recover a formal monadicity theorem. Furthermore, we examine the interaction between the pasting law for relative adjunctions and relative monadicity. As a consequence, we derive necessary and sufficient conditions for the (<em>j</em>-relative) monadicity of the composite of a <figure><img></figure>-functor with a (<em>j</em>-relatively) monadic <figure><img></figure>-functor.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142442427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equivalence between invariance conjectures for parabolic Kazhdan-Lusztig polynomials 抛物线卡兹丹-卢兹蒂格多项式不变性猜想之间的等价性
IF 0.8 2区 数学
Journal of Algebra Pub Date : 2024-10-11 DOI: 10.1016/j.jalgebra.2024.09.026
Paolo Sentinelli
{"title":"Equivalence between invariance conjectures for parabolic Kazhdan-Lusztig polynomials","authors":"Paolo Sentinelli","doi":"10.1016/j.jalgebra.2024.09.026","DOIUrl":"10.1016/j.jalgebra.2024.09.026","url":null,"abstract":"<div><div>We prove that the combinatorial invariance conjecture for parabolic Kazhdan-Lusztig polynomials, formulated by Mario Marietti, is equivalent to its restriction to maximal quotients. This equivalence lies at the other extreme in respect to the equivalence, recently proved by Barkley and Gaetz, with the invariance conjecture for Kazhdan-Lusztig polynomials, which turns out to be equivalent to the conjecture for maximal quotients.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142442488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A categorification of cluster algebras of type B and C through symmetric quivers 通过对称四元组对 B 型和 C 型簇代数进行分类
IF 0.8 2区 数学
Journal of Algebra Pub Date : 2024-10-11 DOI: 10.1016/j.jalgebra.2024.09.015
Azzurra Ciliberti
{"title":"A categorification of cluster algebras of type B and C through symmetric quivers","authors":"Azzurra Ciliberti","doi":"10.1016/j.jalgebra.2024.09.015","DOIUrl":"10.1016/j.jalgebra.2024.09.015","url":null,"abstract":"<div><div>We express cluster variables of type <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> in terms of cluster variables of type <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Then we associate a cluster tilted bound symmetric quiver <em>Q</em> of type <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> to any seed of a cluster algebra of type <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Under this correspondence, cluster variables of type <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> (resp. <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>) correspond to orthogonal (resp. symplectic) indecomposable representations of <em>Q</em>. We find a Caldero-Chapoton map in this setting. We also give a categorical interpretation of the cluster expansion formula in the case of acyclic quivers.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pro-C RAAGs Pro-C RAAGs
IF 0.8 2区 数学
Journal of Algebra Pub Date : 2024-10-11 DOI: 10.1016/j.jalgebra.2024.09.030
Montserrat Casals-Ruiz , Matteo Pintonello , Pavel Zalesskii
{"title":"Pro-C RAAGs","authors":"Montserrat Casals-Ruiz ,&nbsp;Matteo Pintonello ,&nbsp;Pavel Zalesskii","doi":"10.1016/j.jalgebra.2024.09.030","DOIUrl":"10.1016/j.jalgebra.2024.09.030","url":null,"abstract":"<div><div>Let <span><math><mi>C</mi></math></span> be a class of finite groups closed under taking subgroups, quotients, and extensions with abelian kernel. The right-angled Artin pro-<span><math><mi>C</mi></math></span> group <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math></span> (pro-<span><math><mi>C</mi></math></span> RAAG for short) is the pro-<span><math><mi>C</mi></math></span> completion of the right-angled Artin group <span><math><mi>G</mi><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span> associated with the finite simplicial graph Γ.</div><div>In the first part, we describe structural properties of pro-<span><math><mi>C</mi></math></span> RAAGs. Among others, we describe the centraliser of an element and show that pro-<span><math><mi>C</mi></math></span> RAAGs satisfy the Tits' alternative, that standard subgroups are isolated, and that 2-generated pro-<em>p</em> subgroups of pro-<span><math><mi>C</mi></math></span> RAAGs are either free pro-<em>p</em> or free abelian pro-<em>p</em>.</div><div>In the second part, we characterise splittings of pro-<span><math><mi>C</mi></math></span> RAAGs in terms of the defining graph. More precisely, we prove that a pro-<span><math><mi>C</mi></math></span> RAAG <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math></span> splits as a non-trivial direct product if and only if Γ is a join and it splits over an abelian pro-<span><math><mi>C</mi></math></span> group if and only if a connected component of Γ is a complete graph or it has a complete disconnecting subgraph. We then use this characterisation to describe an abelian JSJ decomposition of a pro-<span><math><mi>C</mi></math></span> RAAG, in the sense of Guirardel and Levitt <span><span>[9]</span></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Galois theory and homology in quasi-abelian functor categories 准阿贝尔函数范畴中的伽罗瓦理论和同源性
IF 0.8 2区 数学
Journal of Algebra Pub Date : 2024-10-11 DOI: 10.1016/j.jalgebra.2024.09.031
Nadja Egner
{"title":"Galois theory and homology in quasi-abelian functor categories","authors":"Nadja Egner","doi":"10.1016/j.jalgebra.2024.09.031","DOIUrl":"10.1016/j.jalgebra.2024.09.031","url":null,"abstract":"<div><div>Given a finite category <span><math><mi>T</mi></math></span>, we consider the functor category <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span>, where <span><math><mi>A</mi></math></span> can be any quasi-abelian category. Examples of quasi-abelian categories are given by any abelian category but also by non-exact additive categories as the categories of torsion(-free) abelian groups, topological abelian groups, locally compact abelian groups, Banach spaces and Fréchet spaces. In this situation, the categories of various internal categorical structures in <span><math><mi>A</mi></math></span>, such as the categories of internal <em>n</em>-fold groupoids, are equivalent to functor categories <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span> for a suitable category <span><math><mi>T</mi></math></span>. For a replete full subcategory <span><math><mi>S</mi></math></span> of <span><math><mi>T</mi></math></span>, we define <span><math><mi>F</mi></math></span> to be the full subcategory of <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span> whose objects are given by the functors <span><math><mi>F</mi><mo>:</mo><mi>T</mi><mo>→</mo><mi>A</mi></math></span> with <span><math><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> for all <span><math><mi>T</mi><mo>∉</mo><mi>S</mi></math></span>. We prove that <span><math><mi>F</mi></math></span> is a torsion-free Birkhoff subcategory of <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span>. This allows us to study (higher) central extensions from categorical Galois theory in <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span> with respect to <span><math><mi>F</mi></math></span> and generalized Hopf formulae for homology.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142442411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信