Journal of AlgebraPub Date : 2024-10-15DOI: 10.1016/j.jalgebra.2024.09.025
Yuanyuan Zhang, Junwen Wang
{"title":"Extending structures for dendriform algebras","authors":"Yuanyuan Zhang, Junwen Wang","doi":"10.1016/j.jalgebra.2024.09.025","DOIUrl":"10.1016/j.jalgebra.2024.09.025","url":null,"abstract":"<div><div>In this paper, we devote to extending structures for dendriform algebras. First, we define extending datums and unified products of dendriform algebras, and theoretically solve the extending structure problem. As an application, we consider flag datums as a special case of extending structures, and give an example of the extending structure problem. Second, we apply matched pairs and bicrossed products of dendriform algebras and theoretically solve the factorization problem for dendriform algebras. Moreover, we also introduce cocycle semidirect products and nonabelian semidirect products as special cases of unified products. Finally, we define the deformation map on a dendriform extending structure (more general case), not necessary a matched pair, which is more practical in the classifying complements problem.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2024-10-15DOI: 10.1016/j.jalgebra.2024.10.006
Andrew Kresch , Yuri Tschinkel
{"title":"Unramified Brauer group of quotient spaces by finite groups","authors":"Andrew Kresch , Yuri Tschinkel","doi":"10.1016/j.jalgebra.2024.10.006","DOIUrl":"10.1016/j.jalgebra.2024.10.006","url":null,"abstract":"<div><div>We give a general procedure to determine the unramified Brauer group of quotients of rational varieties by finite groups.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2024-10-15DOI: 10.1016/j.jalgebra.2024.10.007
Andrea Sciandra , Thomas Weber
{"title":"Noncommutative differential geometry on crossed product algebras","authors":"Andrea Sciandra , Thomas Weber","doi":"10.1016/j.jalgebra.2024.10.007","DOIUrl":"10.1016/j.jalgebra.2024.10.007","url":null,"abstract":"<div><div>We provide a differential structure on arbitrary cleft extensions <span><math><mi>B</mi><mo>:</mo><mo>=</mo><msup><mrow><mi>A</mi></mrow><mrow><mrow><mi>co</mi></mrow><mi>H</mi></mrow></msup><mo>⊆</mo><mi>A</mi></math></span> for an <em>H</em>-comodule algebra <em>A</em>. This is achieved by constructing a covariant calculus on the corresponding crossed product algebra <span><math><mi>B</mi><msub><mrow><mi>#</mi></mrow><mrow><mi>σ</mi></mrow></msub><mi>H</mi></math></span> from the data of a bicovariant calculus on the structure Hopf algebra <em>H</em> and a calculus on the base algebra <em>B</em>, which is compatible with the 2-cocycle and measure of the crossed product. The result is a quantum principal bundle with canonical strong connection and we describe the induced bimodule covariant derivatives on associated bundles of the crossed product. All results specialize to trivial extensions and smash product algebras <em>B</em>#<em>H</em> and we give a characterization of the smash product calculus in terms of the differentials of the cleaving map <span><math><mi>j</mi><mo>:</mo><mi>H</mi><mo>→</mo><mi>A</mi></math></span> and the inclusion <span><math><mi>B</mi><mo>↪</mo><mi>A</mi></math></span>. The construction is exemplified for pointed Hopf algebras. In particular, the case of Radford Hopf algebras <span><math><msub><mrow><mi>H</mi></mrow><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></msub></math></span> is spelled out in detail.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2024-10-15DOI: 10.1016/j.jalgebra.2024.08.039
Nils Carqueville , Ehud Meir , Lóránt Szegedy
{"title":"Invariants of r-spin TQFTs and non-semisimplicity","authors":"Nils Carqueville , Ehud Meir , Lóránt Szegedy","doi":"10.1016/j.jalgebra.2024.08.039","DOIUrl":"10.1016/j.jalgebra.2024.08.039","url":null,"abstract":"<div><div>For a positive integer <em>r</em>, an <em>r</em>-spin topological quantum field theory is a 2-dimensional TQFT with tangential structure given by the <em>r</em>-fold cover of <span><math><msub><mrow><mi>SO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. In particular, such a TQFT assigns a scalar invariant to every closed <em>r</em>-spin surface Σ. Given a sequence of scalars indexed by the set of diffeomorphism classes of all such Σ, we construct a symmetric monoidal category <span><math><mi>C</mi></math></span> and a <span><math><mi>C</mi></math></span>-valued <em>r</em>-spin TQFT which reproduces the given sequence. We also determine when such a sequence arises from a TQFT valued in an abelian category with finite-dimensional Hom spaces. In particular, we construct TQFTs with values in super vector spaces that can distinguish all diffeomorphism classes of <em>r</em>-spin surfaces, and we show that the Frobenius algebras associated to such TQFTs are necessarily non-semisimple.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2024-10-11DOI: 10.1016/j.jalgebra.2024.10.004
Norbert Knarr, Markus J. Stroppel
{"title":"Subalgebras of octonion algebras","authors":"Norbert Knarr, Markus J. Stroppel","doi":"10.1016/j.jalgebra.2024.10.004","DOIUrl":"10.1016/j.jalgebra.2024.10.004","url":null,"abstract":"<div><div>For an arbitrary unitary octonion algebra, we determine all subalgebras. It turns out that every subalgebra of dimension less than four is associative, while every subalgebra of dimension greater than four is not associative. In any split octonion algebra, there are both associative and non-associative subalgebras of dimension four. Except for one-dimensional subalgebras spanned by idempotents, any two isomorphic subalgebras are in the same orbit under automorphisms.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2024-10-11DOI: 10.1016/j.jalgebra.2024.08.040
Nathanael Arkor , Dylan McDermott
{"title":"Relative monadicity","authors":"Nathanael Arkor , Dylan McDermott","doi":"10.1016/j.jalgebra.2024.08.040","DOIUrl":"10.1016/j.jalgebra.2024.08.040","url":null,"abstract":"<div><div>We establish a relative monadicity theorem for relative monads with dense roots in a virtual equipment, specialising to a relative monadicity theorem for enriched relative monads. In particular, for a dense <figure><img></figure>-functor <span><math><mi>j</mi><mo>:</mo><mi>A</mi><mo>→</mo><mi>E</mi></math></span>, a <figure><img></figure>-functor <span><math><mi>r</mi><mo>:</mo><mi>D</mi><mo>→</mo><mi>E</mi></math></span> is <em>j</em>-monadic if and only if <em>r</em> admits a left <em>j</em>-relative adjoint and creates <em>j</em>-absolute colimits. This provides a refinement of the classical monadicity theorem – characterising those categories whose objects are given by those of <em>E</em> equipped with algebraic structure – in which the arities of the algebraic operations are valued in <em>A</em>. In particular, when <span><math><mi>j</mi><mo>=</mo><mn>1</mn></math></span>, we recover a formal monadicity theorem. Furthermore, we examine the interaction between the pasting law for relative adjunctions and relative monadicity. As a consequence, we derive necessary and sufficient conditions for the (<em>j</em>-relative) monadicity of the composite of a <figure><img></figure>-functor with a (<em>j</em>-relatively) monadic <figure><img></figure>-functor.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142442427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2024-10-11DOI: 10.1016/j.jalgebra.2024.09.026
Paolo Sentinelli
{"title":"Equivalence between invariance conjectures for parabolic Kazhdan-Lusztig polynomials","authors":"Paolo Sentinelli","doi":"10.1016/j.jalgebra.2024.09.026","DOIUrl":"10.1016/j.jalgebra.2024.09.026","url":null,"abstract":"<div><div>We prove that the combinatorial invariance conjecture for parabolic Kazhdan-Lusztig polynomials, formulated by Mario Marietti, is equivalent to its restriction to maximal quotients. This equivalence lies at the other extreme in respect to the equivalence, recently proved by Barkley and Gaetz, with the invariance conjecture for Kazhdan-Lusztig polynomials, which turns out to be equivalent to the conjecture for maximal quotients.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142442488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2024-10-11DOI: 10.1016/j.jalgebra.2024.09.015
Azzurra Ciliberti
{"title":"A categorification of cluster algebras of type B and C through symmetric quivers","authors":"Azzurra Ciliberti","doi":"10.1016/j.jalgebra.2024.09.015","DOIUrl":"10.1016/j.jalgebra.2024.09.015","url":null,"abstract":"<div><div>We express cluster variables of type <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> in terms of cluster variables of type <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Then we associate a cluster tilted bound symmetric quiver <em>Q</em> of type <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> to any seed of a cluster algebra of type <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Under this correspondence, cluster variables of type <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> (resp. <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>) correspond to orthogonal (resp. symplectic) indecomposable representations of <em>Q</em>. We find a Caldero-Chapoton map in this setting. We also give a categorical interpretation of the cluster expansion formula in the case of acyclic quivers.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2024-10-11DOI: 10.1016/j.jalgebra.2024.09.030
Montserrat Casals-Ruiz , Matteo Pintonello , Pavel Zalesskii
{"title":"Pro-C RAAGs","authors":"Montserrat Casals-Ruiz , Matteo Pintonello , Pavel Zalesskii","doi":"10.1016/j.jalgebra.2024.09.030","DOIUrl":"10.1016/j.jalgebra.2024.09.030","url":null,"abstract":"<div><div>Let <span><math><mi>C</mi></math></span> be a class of finite groups closed under taking subgroups, quotients, and extensions with abelian kernel. The right-angled Artin pro-<span><math><mi>C</mi></math></span> group <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math></span> (pro-<span><math><mi>C</mi></math></span> RAAG for short) is the pro-<span><math><mi>C</mi></math></span> completion of the right-angled Artin group <span><math><mi>G</mi><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span> associated with the finite simplicial graph Γ.</div><div>In the first part, we describe structural properties of pro-<span><math><mi>C</mi></math></span> RAAGs. Among others, we describe the centraliser of an element and show that pro-<span><math><mi>C</mi></math></span> RAAGs satisfy the Tits' alternative, that standard subgroups are isolated, and that 2-generated pro-<em>p</em> subgroups of pro-<span><math><mi>C</mi></math></span> RAAGs are either free pro-<em>p</em> or free abelian pro-<em>p</em>.</div><div>In the second part, we characterise splittings of pro-<span><math><mi>C</mi></math></span> RAAGs in terms of the defining graph. More precisely, we prove that a pro-<span><math><mi>C</mi></math></span> RAAG <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math></span> splits as a non-trivial direct product if and only if Γ is a join and it splits over an abelian pro-<span><math><mi>C</mi></math></span> group if and only if a connected component of Γ is a complete graph or it has a complete disconnecting subgraph. We then use this characterisation to describe an abelian JSJ decomposition of a pro-<span><math><mi>C</mi></math></span> RAAG, in the sense of Guirardel and Levitt <span><span>[9]</span></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2024-10-11DOI: 10.1016/j.jalgebra.2024.09.031
Nadja Egner
{"title":"Galois theory and homology in quasi-abelian functor categories","authors":"Nadja Egner","doi":"10.1016/j.jalgebra.2024.09.031","DOIUrl":"10.1016/j.jalgebra.2024.09.031","url":null,"abstract":"<div><div>Given a finite category <span><math><mi>T</mi></math></span>, we consider the functor category <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span>, where <span><math><mi>A</mi></math></span> can be any quasi-abelian category. Examples of quasi-abelian categories are given by any abelian category but also by non-exact additive categories as the categories of torsion(-free) abelian groups, topological abelian groups, locally compact abelian groups, Banach spaces and Fréchet spaces. In this situation, the categories of various internal categorical structures in <span><math><mi>A</mi></math></span>, such as the categories of internal <em>n</em>-fold groupoids, are equivalent to functor categories <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span> for a suitable category <span><math><mi>T</mi></math></span>. For a replete full subcategory <span><math><mi>S</mi></math></span> of <span><math><mi>T</mi></math></span>, we define <span><math><mi>F</mi></math></span> to be the full subcategory of <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span> whose objects are given by the functors <span><math><mi>F</mi><mo>:</mo><mi>T</mi><mo>→</mo><mi>A</mi></math></span> with <span><math><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> for all <span><math><mi>T</mi><mo>∉</mo><mi>S</mi></math></span>. We prove that <span><math><mi>F</mi></math></span> is a torsion-free Birkhoff subcategory of <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span>. This allows us to study (higher) central extensions from categorical Galois theory in <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msup></math></span> with respect to <span><math><mi>F</mi></math></span> and generalized Hopf formulae for homology.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142442411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}