{"title":"A topological approach to key polynomials","authors":"Enric Nart , Josnei Novacoski , Giulio Peruginelli","doi":"10.1016/j.jalgebra.2025.06.046","DOIUrl":"10.1016/j.jalgebra.2025.06.046","url":null,"abstract":"<div><div>In this paper we present characterizations of the sets of key polynomials and abstract key polynomials for a valuation <em>μ</em> of <span><math><mi>K</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, in terms of (ultrametric) balls in the algebraic closure <span><math><mover><mrow><mi>K</mi></mrow><mo>‾</mo></mover></math></span> of <em>K</em> with respect to <em>v</em>, a fixed extension of <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mo>|</mo><mi>K</mi></mrow></msub></math></span> to <span><math><mover><mrow><mi>K</mi></mrow><mo>‾</mo></mover></math></span>. In particular, we show that the ways of augmenting <em>μ</em>, in the sense of Mac Lane, are in one-to-one correspondence with the partition of a fixed closed ball <span><math><mi>B</mi><mo>(</mo><mi>a</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span> associated to <em>μ</em> into the disjoint union of open balls <span><math><msup><mrow><mi>B</mi></mrow><mrow><mo>∘</mo></mrow></msup><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>δ</mi><mo>)</mo></math></span>, modulo the action of the decomposition group of <em>v</em>. We also present a similar characterization for the set of limit key polynomials for an increasing family of valuations of <span><math><mi>K</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"684 ","pages":"Pages 280-307"},"PeriodicalIF":0.8,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144694952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2025-07-14DOI: 10.1016/j.jalgebra.2025.07.005
Linda Hoyer
{"title":"Orthogonal determinants of GLn(q)","authors":"Linda Hoyer","doi":"10.1016/j.jalgebra.2025.07.005","DOIUrl":"10.1016/j.jalgebra.2025.07.005","url":null,"abstract":"<div><div>Let <em>n</em> be a positive integer and <em>q</em> be a power of an odd prime. We provide explicit formulas for calculating the orthogonal determinants <span><math><mi>det</mi><mo></mo><mo>(</mo><mi>χ</mi><mo>)</mo></math></span>, where <span><math><mi>χ</mi><mo>∈</mo><mrow><mi>Irr</mi></mrow><mo>(</mo><msub><mrow><mi>GL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>)</mo></math></span> is an orthogonal character of even degree. Moreover, we show that <span><math><mi>det</mi><mo></mo><mo>(</mo><mi>χ</mi><mo>)</mo></math></span> is “odd”. This confirms a special case of a conjecture by Richard Parker.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"684 ","pages":"Pages 234-255"},"PeriodicalIF":0.8,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144686808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2025-07-09DOI: 10.1016/j.jalgebra.2025.07.004
Fausto De Mari
{"title":"Groups with finitely many isomorphism classes of non-pronormal subgroups","authors":"Fausto De Mari","doi":"10.1016/j.jalgebra.2025.07.004","DOIUrl":"10.1016/j.jalgebra.2025.07.004","url":null,"abstract":"<div><div>A subgroup <em>H</em> of a group <em>G</em> is said to be <em>pronormal</em> if <em>H</em> and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>g</mi></mrow></msup></math></span> are conjugate in <span><math><mo>〈</mo><mi>H</mi><mo>,</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>g</mi></mrow></msup><mo>〉</mo></math></span> for every element <em>g</em> of <em>G</em>. The behaviour of pronormal subgroups in finite or infinite groups has been often investigated and, in particular, the structure of (generalized) soluble groups in which all subgroups are pronormal is known. Here it is proved that any (generalized) soluble group in which non-pronormal subgroups fall into finitely many isomorphism classes either is minimax or a group in which all subgroups are pronormal.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"683 ","pages":"Pages 719-733"},"PeriodicalIF":0.8,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144653994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2025-07-09DOI: 10.1016/j.jalgebra.2025.07.003
Yan Liu, Yao Ma, Liangyun Chen
{"title":"Non-weight modules over the algebra HW(b)","authors":"Yan Liu, Yao Ma, Liangyun Chen","doi":"10.1016/j.jalgebra.2025.07.003","DOIUrl":"10.1016/j.jalgebra.2025.07.003","url":null,"abstract":"<div><div>For the parameter <span><math><mi>b</mi><mo>∈</mo><mi>C</mi></math></span>, let <span><math><mrow><mi>HW</mi></mrow><mo>(</mo><mi>b</mi><mo>)</mo></math></span> be the semidirect product of the Witt algebra and the loop Heisenberg Lie algebra. In this paper, we study some non-weight modules over <span><math><mrow><mi>HW</mi></mrow><mo>(</mo><mi>b</mi><mo>)</mo></math></span>, specifically focusing on restricted modules, <span><math><mi>U</mi><mo>(</mo><mi>C</mi><msub><mrow><mi>L</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>-free modules of rank 1 and the tensor product of both. We prove that these three classes of non-weight <span><math><mrow><mi>HW</mi></mrow><mo>(</mo><mi>b</mi><mo>)</mo></math></span>-modules are pairwise non-isomorphic. Finally, we transform some tensor product modules over <span><math><mrow><mi>HW</mi></mrow><mo>(</mo><mi>b</mi><mo>)</mo></math></span> into induced modules from modules of its certain subalgebras for the case <span><math><mi>b</mi><mo>≠</mo><mo>±</mo><mn>1</mn></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"683 ","pages":"Pages 604-632"},"PeriodicalIF":0.8,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144632795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2025-07-08DOI: 10.1016/j.jalgebra.2025.07.002
Agata Smoktunowicz
{"title":"An interconnection between pre-Lie rings, braces and associative rings","authors":"Agata Smoktunowicz","doi":"10.1016/j.jalgebra.2025.07.002","DOIUrl":"10.1016/j.jalgebra.2025.07.002","url":null,"abstract":"<div><div>Let <em>A</em> be a brace of cardinality <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> for some prime number <em>p</em>. Denote <span><math><mi>a</mi><mi>n</mi><mi>n</mi><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msup><mo>)</mo><mo>=</mo><mo>{</mo><mi>a</mi><mo>∈</mo><mi>A</mi><mo>:</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msup><mi>a</mi><mo>=</mo><mn>0</mn><mo>}</mo></math></span>. Suppose that for <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo></math></span> and all <span><math><mi>a</mi><mo>,</mo><mi>b</mi><mo>∈</mo><mi>A</mi></math></span> we have<span><span><span><math><mi>a</mi><mo>⁎</mo><mo>(</mo><mi>a</mi><mo>⁎</mo><mo>(</mo><mo>⋯</mo><mo>⁎</mo><mi>a</mi><mo>⁎</mo><mi>b</mi><mo>)</mo><mo>)</mo><mo>∈</mo><mi>p</mi><mi>A</mi><mo>,</mo><mi>a</mi><mo>⁎</mo><mo>(</mo><mi>a</mi><mo>⁎</mo><mo>(</mo><mo>⋯</mo><mo>⁎</mo><mi>a</mi><mo>⁎</mo><mi>a</mi><mi>n</mi><mi>n</mi><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msup><mo>)</mo><mo>)</mo><mo>)</mo><mo>∈</mo><mi>a</mi><mi>n</mi><mi>n</mi><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span></span></span> where <em>a</em> appears less than <span><math><mfrac><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></math></span> times in this expression. Let <em>k</em> be such that <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>k</mi><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup><mi>A</mi><mo>=</mo><mn>0</mn></math></span>. It is shown that the brace <span><math><mi>A</mi><mo>/</mo><mi>a</mi><mi>n</mi><mi>n</mi><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>4</mn><mi>k</mi></mrow></msup><mo>)</mo></math></span> is obtained from a left nilpotent pre-Lie ring by a formula which depends only on the additive group of brace <em>A</em>. We also obtain some applications of this result.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"683 ","pages":"Pages 576-603"},"PeriodicalIF":0.8,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144632252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2025-07-07DOI: 10.1016/j.jalgebra.2025.06.035
Lucas Seco , Arthur Garnier , Karl-Hermann Neeb
{"title":"Fundamental polytope for the isometry group of an alcove","authors":"Lucas Seco , Arthur Garnier , Karl-Hermann Neeb","doi":"10.1016/j.jalgebra.2025.06.035","DOIUrl":"10.1016/j.jalgebra.2025.06.035","url":null,"abstract":"<div><div>A fundamental alcove <span><math><mi>A</mi></math></span> is a tile in a paving of a vector space <em>V</em> by an affine reflection group <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>aff</mi></mrow></msub></math></span>. Its geometry encodes essential features of <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>aff</mi></mrow></msub></math></span>, such as its affine Dynkin diagram <span><math><mover><mrow><mi>D</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> and fundamental group Ω. In this article we investigate its full isometry group <span><math><mi>Aut</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span>. It is well known that the isometry group of a regular polyhedron is generated by hyperplane reflections on its faces. Being a simplex, an alcove <span><math><mi>A</mi></math></span> is the simplest of polyhedra, nevertheless it is seldom a regular one. In our first main result we show that <span><math><mi>Aut</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> is isomorphic to <span><math><mi>Aut</mi><mo>(</mo><mover><mrow><mi>D</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></math></span>. Building on this connection, we establish that <span><math><mi>Aut</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> is an abstract Coxeter group, with generators given by affine isometric involutions of the ambient space. Although these involutions are seldom reflections, our second main result leverages them to construct, by slicing the Komrakov–Premet fundamental polytope <span><math><mi>K</mi></math></span> for the action of Ω, a family of fundamental polytopes for the action of <span><math><mi>Aut</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> on <span><math><mi>A</mi></math></span>, whose vertices are contained in the vertices of <span><math><mi>K</mi></math></span> and whose faces are parametrized by the so-called balanced minuscule roots, which we introduce here. In an appendix, we discuss some related negative results on stratified centralizers and equivariant triangulations.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"683 ","pages":"Pages 633-671"},"PeriodicalIF":0.8,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144632251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2025-07-07DOI: 10.1016/j.jalgebra.2025.07.001
Abhishek Banerjee , Surjeet Kour
{"title":"Entwined comodules and contramodules over coalgebras with several objects: Frobenius, separability and Maschke theorems","authors":"Abhishek Banerjee , Surjeet Kour","doi":"10.1016/j.jalgebra.2025.07.001","DOIUrl":"10.1016/j.jalgebra.2025.07.001","url":null,"abstract":"<div><div>We study module like objects over categorical quotients of algebras by the action of coalgebras with several objects. These take the form of “entwined comodules” and “entwined contramodules” over a triple <span><math><mo>(</mo><mi>C</mi><mo>,</mo><mi>A</mi><mo>,</mo><mi>ψ</mi><mo>)</mo></math></span>, where <em>A</em> is an algebra, <span><math><mi>C</mi></math></span> is a coalgebra with several objects and <em>ψ</em> is a collection of maps that “entwines” <span><math><mi>C</mi></math></span> with <em>A</em>. Our objective is to prove Frobenius, separability and Maschke type theorems for functors between categories of entwined comodules and entwined contramodules.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"683 ","pages":"Pages 533-575"},"PeriodicalIF":0.8,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144614581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2025-07-04DOI: 10.1016/j.jalgebra.2025.06.026
Allan Berele
{"title":"Embedding theorems for algebras with trace","authors":"Allan Berele","doi":"10.1016/j.jalgebra.2025.06.026","DOIUrl":"10.1016/j.jalgebra.2025.06.026","url":null,"abstract":"<div><div>Let <span><math><mi>M</mi><mo>(</mo><munder><mrow><mi>n</mi></mrow><mo>_</mo></munder><mo>,</mo><munder><mrow><mi>d</mi></mrow><mo>_</mo></munder><mo>)</mo></math></span> be a direct sum of matrix algebras <span><math><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>⊕</mo><mo>⋯</mo><mo>⊕</mo><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow></msub></math></span> in characteristic 0, with a trace function <span><math><mi>t</mi><mi>r</mi><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo><mo>=</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋅</mo><mi>t</mi><mi>r</mi><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>+</mo><mo>⋯</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>⋅</mo><mi>t</mi><mi>r</mi><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></math></span>, for some <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>∈</mo><msup><mrow><mi>F</mi></mrow><mrow><mo>×</mo></mrow></msup></math></span>. If the pairs <span><math><mo>(</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span> are all different, then any algebra with trace, trace equivalent to <span><math><mi>M</mi><mo>(</mo><munder><mrow><mi>n</mi></mrow><mo>_</mo></munder><mo>,</mo><munder><mrow><mi>d</mi></mrow><mo>_</mo></munder><mo>)</mo></math></span>, has an embedding into <span><math><mi>M</mi><mo>(</mo><munder><mrow><mi>n</mi></mrow><mo>_</mo></munder><mo>,</mo><munder><mrow><mi>d</mi></mrow><mo>_</mo></munder><mo>)</mo><mo>⊗</mo><mi>B</mi></math></span>, for some commutative algebra <em>B</em>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"683 ","pages":"Pages 355-363"},"PeriodicalIF":0.8,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144580283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2025-07-04DOI: 10.1016/j.jalgebra.2025.06.034
Le Minh Ha , Nguyen Dang Ho Hai , Nguyen Van Nghia
{"title":"On modular invariants of the truncated polynomial rings in low ranks","authors":"Le Minh Ha , Nguyen Dang Ho Hai , Nguyen Van Nghia","doi":"10.1016/j.jalgebra.2025.06.034","DOIUrl":"10.1016/j.jalgebra.2025.06.034","url":null,"abstract":"<div><div>We verify the conjectures due to Lewis, Reiner, and Stanton about the Hilbert series of the invariant ring of the truncated polynomial ring for all parabolic subgroups up to rank 3. This is done by constructing an explicit set of generators for each invariant ring in question. We also propose a conjecture concerning the action of the Steenrod algebra and the Dickson algebra on a certain naturally occurring filtration of the invariant ring under the action of the general linear group.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"683 ","pages":"Pages 319-354"},"PeriodicalIF":0.8,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144580261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2025-07-03DOI: 10.1016/j.jalgebra.2025.06.033
Pierrick Dartois
{"title":"Fast computation of 2-isogenies in dimension 4 and cryptographic applications","authors":"Pierrick Dartois","doi":"10.1016/j.jalgebra.2025.06.033","DOIUrl":"10.1016/j.jalgebra.2025.06.033","url":null,"abstract":"<div><div>Dimension 4 isogenies have first been introduced in cryptography for the cryptanalysis of Supersingular Isogeny Diffie-Hellman (SIDH) and have been used constructively in several schemes, including SQIsignHD, a derivative of SQIsign isogeny based signature scheme. Unlike in dimensions 2 and 3, we can no longer rely on the Jacobian model and its derivatives to compute isogenies. In dimension 4 (and higher), we can only use theta-models. Previous works by Romain Cosset, David Lubicz and Damien Robert have focused on the computation of <em>ℓ</em>-isogenies in theta-models of level <em>n</em> coprime to <em>ℓ</em> (which requires to use <span><math><msup><mrow><mi>n</mi></mrow><mrow><mi>g</mi></mrow></msup></math></span> coordinates in dimension <em>g</em>). For cryptographic applications, we need to compute chains of 2-isogenies, requiring to use <span><math><mo>≥</mo><msup><mrow><mn>3</mn></mrow><mrow><mi>g</mi></mrow></msup></math></span> coordinates in dimension <em>g</em> with state of the art algorithms.</div><div>In this paper, we present algorithms to compute chains of 2-isogenies between abelian varieties of dimension <span><math><mi>g</mi><mo>≥</mo><mn>1</mn></math></span> with theta coordinates of level <span><math><mi>n</mi><mo>=</mo><mn>2</mn></math></span>, generalizing a previous work by Pierrick Dartois, Luciano Maino, Giacomo Pope and Damien Robert in dimension <span><math><mi>g</mi><mo>=</mo><mn>2</mn></math></span>. We propose an implementation of these algorithms in dimension <span><math><mi>g</mi><mo>=</mo><mn>4</mn></math></span> to compute endomorphisms of elliptic curve products derived from Kani's lemma with applications to SQIsignHD and SIDH cryptanalysis. We are now able to run a complete key recovery attack on SIDH when the endomorphism ring of the starting curve is unknown within a few seconds on a laptop for all NIST SIKE parameters.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"683 ","pages":"Pages 449-514"},"PeriodicalIF":0.8,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144594923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}