Abelianization of SL2 over Dedekind domains of arithmetic type

IF 0.8 2区 数学 Q2 MATHEMATICS
Behrooz Mirzaii, Bruno R. Ramos, Thiago Verissimo
{"title":"Abelianization of SL2 over Dedekind domains of arithmetic type","authors":"Behrooz Mirzaii,&nbsp;Bruno R. Ramos,&nbsp;Thiago Verissimo","doi":"10.1016/j.jalgebra.2025.08.046","DOIUrl":null,"url":null,"abstract":"<div><div>We determine the exact group structure of the abelianization of <span><math><msub><mrow><mtext>SL</mtext></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, in which <em>A</em> is a Dedekind domain of arithmetic type with infinitely many units. In particular, our results show that <span><math><msub><mrow><mtext>SL</mtext></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mrow><mtext>ab</mtext></mrow></msup></math></span> is finite, with exponent dividing 12 when <span><math><mtext>char</mtext><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>, and dividing 6 when <span><math><mtext>char</mtext><mo>(</mo><mi>A</mi><mo>)</mo><mo>&gt;</mo><mn>0</mn></math></span>. As illustrative examples, we compute <span><math><msub><mrow><mtext>SL</mtext></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mrow><mtext>ab</mtext></mrow></msup></math></span> explicitly for instances where <em>A</em> is the ring of integers of a real quadratic field or a cyclotomic extension.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"688 ","pages":"Pages 1-20"},"PeriodicalIF":0.8000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325005460","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We determine the exact group structure of the abelianization of SL2(A), in which A is a Dedekind domain of arithmetic type with infinitely many units. In particular, our results show that SL2(A)ab is finite, with exponent dividing 12 when char(A)=0, and dividing 6 when char(A)>0. As illustrative examples, we compute SL2(A)ab explicitly for instances where A is the ring of integers of a real quadratic field or a cyclotomic extension.
算术型Dedekind域上SL2的阿贝尔化
我们确定了SL2(A)的阿贝尔化的精确群结构,其中A是一个具有无限多单位的算术型Dedekind定义域。特别地,我们的结果表明,SL2(A)ab是有限的,当char(A)=0时指数除12,当char(A)>;0时指数除6。作为说明性的例子,我们显式地计算了SL2(A)ab,其中A是实二次域的整数环或环形扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信