{"title":"Hopf-Galois理论中斜撑的半直积","authors":"Paul J. Truman","doi":"10.1016/j.jalgebra.2025.10.004","DOIUrl":null,"url":null,"abstract":"<div><div>We classify skew braces that are the semidirect product of an ideal and a left ideal. As a consequence, given a Galois extension of fields <span><math><mi>L</mi><mo>/</mo><mi>K</mi></math></span> whose Galois group is the semidirect product of a normal subgroup <em>A</em> and a subgroup <em>B</em>, we classify the Hopf-Galois structures on <span><math><mi>L</mi><mo>/</mo><mi>K</mi></math></span> that realize <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>A</mi></mrow></msup></math></span> via a normal Hopf subalgebra and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>B</mi></mrow></msup></math></span> via a Hopf subalgebra. We show that the Hopf algebra giving such a Hopf-Galois structure is the smash product of these Hopf subalgebras, and use this description to study generalized normal basis generators and questions of integral module structure in extensions of local fields.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"687 ","pages":"Pages 825-850"},"PeriodicalIF":0.8000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some semidirect products of skew braces arising in Hopf-Galois theory\",\"authors\":\"Paul J. Truman\",\"doi\":\"10.1016/j.jalgebra.2025.10.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We classify skew braces that are the semidirect product of an ideal and a left ideal. As a consequence, given a Galois extension of fields <span><math><mi>L</mi><mo>/</mo><mi>K</mi></math></span> whose Galois group is the semidirect product of a normal subgroup <em>A</em> and a subgroup <em>B</em>, we classify the Hopf-Galois structures on <span><math><mi>L</mi><mo>/</mo><mi>K</mi></math></span> that realize <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>A</mi></mrow></msup></math></span> via a normal Hopf subalgebra and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>B</mi></mrow></msup></math></span> via a Hopf subalgebra. We show that the Hopf algebra giving such a Hopf-Galois structure is the smash product of these Hopf subalgebras, and use this description to study generalized normal basis generators and questions of integral module structure in extensions of local fields.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"687 \",\"pages\":\"Pages 825-850\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325005678\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325005678","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Some semidirect products of skew braces arising in Hopf-Galois theory
We classify skew braces that are the semidirect product of an ideal and a left ideal. As a consequence, given a Galois extension of fields whose Galois group is the semidirect product of a normal subgroup A and a subgroup B, we classify the Hopf-Galois structures on that realize via a normal Hopf subalgebra and via a Hopf subalgebra. We show that the Hopf algebra giving such a Hopf-Galois structure is the smash product of these Hopf subalgebras, and use this description to study generalized normal basis generators and questions of integral module structure in extensions of local fields.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.