Journal of Aerosol Science最新文献

筛选
英文 中文
Laser synthesis of oxide nanoparticles with controlled gas condensation 利用受控气体凝结激光合成氧化物纳米颗粒
IF 3.9 3区 环境科学与生态学
Journal of Aerosol Science Pub Date : 2024-07-10 DOI: 10.1016/j.jaerosci.2024.106434
Anton I. Kostyukov, Tamara V. Markelova, Aleksandr A. Nashivochnikov, Vladimir N. Snytnikov, Evgenii A. Suprun, Valeriy N. Snytnikov
{"title":"Laser synthesis of oxide nanoparticles with controlled gas condensation","authors":"Anton I. Kostyukov,&nbsp;Tamara V. Markelova,&nbsp;Aleksandr A. Nashivochnikov,&nbsp;Vladimir N. Snytnikov,&nbsp;Evgenii A. Suprun,&nbsp;Valeriy N. Snytnikov","doi":"10.1016/j.jaerosci.2024.106434","DOIUrl":"https://doi.org/10.1016/j.jaerosci.2024.106434","url":null,"abstract":"<div><p>In this work, the oxide nanopowders of Al<sub>2</sub>O<sub>3</sub>, ZrO<sub>2</sub>, Y<sub>2</sub>O<sub>3</sub>, Gd<sub>2</sub>O<sub>3</sub>, CeO<sub>2</sub>, and SiO<sub>2</sub> were synthesized by CW CO<sub>2</sub> laser vaporization technique with controlled gas condensation in an inert atmosphere. Methods for controlling the size of the resulting nanoparticles by adjusting the gas composition and pressure during the vaporization process have been demonstrated. The potential for producing ultrasmall oxide nanoparticles with dimensions less than 5 nm has been shown. The size distribution of nanoparticles taken from different parts of the evaporation-condensation tract was studied using scanning (SEM) and transmission (TEM) electron microscopy methods. The effect of synthesis conditions (pressure and composition of the inert gas) on characteristics of the nanoparticles is discussed. Using a wide class of simple oxides as the example, it is shown that the powders synthesized by the laser method consist of three types of particles: target spherical particles with a diameter of 3–20 nm (more than 98%), larger spherical particles with a diameter of 50–200 nm, and shapeless large particles with sizes more than 200 nm. The possibility of separating large particles from the main particles using the original labyrinth system for gas pumping is shown. The obtained particles with controlled sizes can be effectively used in various applications, in particular, for the preparation of catalysts and adsorbents.</p></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"181 ","pages":"Article 106434"},"PeriodicalIF":3.9,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141606218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new LED-based extinction tomography method for measurement of aerosol surface area 测量气溶胶表面积的新型 LED 消光层析成像法
IF 3.9 3区 环境科学与生态学
Journal of Aerosol Science Pub Date : 2024-07-05 DOI: 10.1016/j.jaerosci.2024.106432
Liam Milton-McGurk , Agisilaos Kourmatzis , Hak-Kim Chan , Shaokoon Cheng , Assaad R. Masri , Dino Farina
{"title":"A new LED-based extinction tomography method for measurement of aerosol surface area","authors":"Liam Milton-McGurk ,&nbsp;Agisilaos Kourmatzis ,&nbsp;Hak-Kim Chan ,&nbsp;Shaokoon Cheng ,&nbsp;Assaad R. Masri ,&nbsp;Dino Farina","doi":"10.1016/j.jaerosci.2024.106432","DOIUrl":"https://doi.org/10.1016/j.jaerosci.2024.106432","url":null,"abstract":"<div><p>A light-emitting-diode (LED) based optical technique is developed to measure the surface area per unit volume of particles in aerosols and liquid sprays. The technique uses path-integrated measurements of transmittance, <em>T</em>, from two angles to produce a tomographic reconstruction of the local extinction coefficients, <em>K</em>, in the region of interest, using the Beer-Lambert law and a deconvolution algorithm. When the particles in the flow have sufficiently large diameters (existing in the Mie scattering regime), these extinction coefficients can be related to the surface area per unit volume of the particles. The technique has the potential to be applied to a wide range of two-phase flows. In the present study, it is applied to flows through a pharmaceutical inhaler device, where two powders with different particle size distributions are considered.</p></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"181 ","pages":"Article 106432"},"PeriodicalIF":3.9,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021850224000995/pdfft?md5=8cbeb2c02ecae7df5d33afab932bcd0d&pid=1-s2.0-S0021850224000995-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141583312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of improved spray system with effective electrical electrodes for aerosol removal: An experimental study in UTARTS facility 开发带有有效电电极的改进型喷雾系统,用于清除气溶胶:UTARTS设施中的实验研究
IF 3.9 3区 环境科学与生态学
Journal of Aerosol Science Pub Date : 2024-07-01 DOI: 10.1016/j.jaerosci.2024.106431
Ruicong Xu , Avadhesh Kumar Sharma , Shuichiro Miwa , Shunichi Suzuki
{"title":"Development of improved spray system with effective electrical electrodes for aerosol removal: An experimental study in UTARTS facility","authors":"Ruicong Xu ,&nbsp;Avadhesh Kumar Sharma ,&nbsp;Shuichiro Miwa ,&nbsp;Shunichi Suzuki","doi":"10.1016/j.jaerosci.2024.106431","DOIUrl":"https://doi.org/10.1016/j.jaerosci.2024.106431","url":null,"abstract":"<div><p>Safe reactor decommissioning, especially for damaged Fukushima Daiichi (1F) nuclear power plants, is vital for environmental safety. Key challenges include remotely cleaning radiation hotspots and cutting fuel debris within the damaged primary containment vessel. However, submicron radioactive Aerosol Particles (APs) can be generated, thus necessitating effective aerosol control and removal to avoid radioactive environmental pollution and reduce radiation exposure risks during 1F decommissioning. Flue gases containing submicron APs that result in environmental pollution can also generated from other industrial works, e.g., coal, mining and chemical sectors. Conventional water spray is difficult to scavenge these small APs. Although previous studies showed the effectiveness of charged droplets on accelerating aerosol removal, the charging configuration is also important to scavenging performance. Hence, this study performs aerosol scavenging experiments in our UTARTS facility with varying induction electrode designs. Experimental results show the saturation of scavenging efficiency at high voltage and indicate the importance of charging polarity. Moreover, proper configurations of electrode position, geometry and material are studied and discussed. Our findings can be beneficial for the improvement of spray system for aerosol removal to mitigate radioactivity release and minimize contaminated water production and have implications for gas purification in various environmental and chemical industries.</p></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"181 ","pages":"Article 106431"},"PeriodicalIF":3.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021850224000983/pdfft?md5=e9ca1cd4708b82384b620b65ed1b7bb7&pid=1-s2.0-S0021850224000983-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141543604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting particle deposition in an adult human lung using an oscillatory, lumped respiratory model 利用振荡块状呼吸模型预测颗粒在成人肺部的沉积情况
IF 3.9 3区 环境科学与生态学
Journal of Aerosol Science Pub Date : 2024-06-26 DOI: 10.1016/j.jaerosci.2024.106430
Jordana E. O’Brien , Kara L. Maki , Jennifer A. O’Neil
{"title":"Predicting particle deposition in an adult human lung using an oscillatory, lumped respiratory model","authors":"Jordana E. O’Brien ,&nbsp;Kara L. Maki ,&nbsp;Jennifer A. O’Neil","doi":"10.1016/j.jaerosci.2024.106430","DOIUrl":"https://doi.org/10.1016/j.jaerosci.2024.106430","url":null,"abstract":"<div><p>Inhalation has become widely accepted as the optimal drug delivery mechanism for respiratory diseases, which often requires targeting a particular region of the lung. Mathematical models are key to understanding the factors that influence drug transport and deposition in the lung. This study proposes a simple zero-dimensional typical path model that couples respiratory mechanics and particle deposition over multiple oscillatory breathing cycles. Respiration is modeled using an RLC (resistance–inductance–capacitance) circuit analog framework to capture airflows, lung pressures, and volumes. The model is validated against experimental deposition fractions reported in the literature. The model is used to explore the effects of oscillatory respiration and multiple breaths on particle deposition in different regions of the lung. The results indicate that oscillatory dynamics are important in compliant airways. Deposition increases over multiple breaths as the concentration of suspended particles increases in the respiratory airways.</p></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"181 ","pages":"Article 106430"},"PeriodicalIF":3.9,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141606217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the consideration of signal trapping for soot sizing by angular light scattering in laminar flames 关于在层流火焰中利用角光散射进行烟尘测定的信号捕获考虑
IF 3.9 3区 环境科学与生态学
Journal of Aerosol Science Pub Date : 2024-06-22 DOI: 10.1016/j.jaerosci.2024.106429
M. Littin , A. Poux , G. Lefevre , M. Mazur , A. Fuentes , J. Yon
{"title":"On the consideration of signal trapping for soot sizing by angular light scattering in laminar flames","authors":"M. Littin ,&nbsp;A. Poux ,&nbsp;G. Lefevre ,&nbsp;M. Mazur ,&nbsp;A. Fuentes ,&nbsp;J. Yon","doi":"10.1016/j.jaerosci.2024.106429","DOIUrl":"https://doi.org/10.1016/j.jaerosci.2024.106429","url":null,"abstract":"<div><p>Soot particles are known to be harmful to health and the environment, and reducing their production in industrial systems is a crucial task in the pursuit of green energy production. Characterization and accurate modeling of these particles are essential yet complex. In particular, information on aggregate sizing remains limited. Angular light scattering is an established in-situ method for precise, spatially resolved, non-intrusive characterization of soot aggregates. However, the associated post-processing is prone to various error sources. Specifically, signal trapping during light scattering is suspected to lead significant errors. Moreover, current techniques for reconstructing the line-of-sight integrated scattering signal (Abel inversion) are inherently noisy. This work addresses both issues by implementing a noise-free Abel inversion method based on piecewise spline functions. This method accounts for signal trapping and can be applied to any axisymmetric and spatially continuous flame. The correction for the signal trapping effect relies on extinction measurements from the line-of-sight attenuation (LOSA). The technique is tested on a canonical laminar diffusion ethylene flame at five different angles. The impact of this correction is evaluated on the equivalent monodisperse radius of gyration, denoted as <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>g</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span>, and the forward scattering coefficient, represented as <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mi>v</mi><mi>v</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span>. The results show that the calculation of <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>g</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span> is robust regarding signal trapping effect. However, correcting for this effect significantly increases <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mi>v</mi><mi>v</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"181 ","pages":"Article 106429"},"PeriodicalIF":3.9,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141479970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forces acting on near-wall spherical particles in shear flows of diluted gases 稀释气体剪切流中作用于近壁球形颗粒的力
IF 3.9 3区 环境科学与生态学
Journal of Aerosol Science Pub Date : 2024-06-19 DOI: 10.1016/j.jaerosci.2024.106427
Kexue Zhang, Wangwang Liu, Xinquan Chang, Jun Wang, Guodong Xia
{"title":"Forces acting on near-wall spherical particles in shear flows of diluted gases","authors":"Kexue Zhang,&nbsp;Wangwang Liu,&nbsp;Xinquan Chang,&nbsp;Jun Wang,&nbsp;Guodong Xia","doi":"10.1016/j.jaerosci.2024.106427","DOIUrl":"https://doi.org/10.1016/j.jaerosci.2024.106427","url":null,"abstract":"<div><p>In the present paper, we studied the forces on a spherical particle of radius <em>R</em> moving in the vicinity of the plane wall in a shear flow of free molecular regime. We consider that the distance ratio between the plane wall and the particle (<em>L</em>) and the particle radius (<em>R</em>) is large (e.g., <em>L</em>/<em>R</em> &gt; 5), and the gas molecular mean free path (<em>λ</em>) is much higher than the particle size (<em>λ</em>/<em>R</em> ≫1). An analytical formula for the forces is obtained based on gas kinetic theory and certain simplifying assumptions, and is verified by using Direct Simulation Monte Carlo Method. It is found that the forces acting on the particle can be affected by the momentum accommodation coefficients (<em>σ</em>) of the wall and particle surfaces, the wall/gas temperature ratios (<em>T</em><sub>w</sub>/<em>T</em>), and the velocity gradient (<em><strong>G</strong></em>) of the gas flow. In the cases of specular reflections (<em>σ</em> = 0), the near-wall effect can be neglected. With the increase of the momentum accommodation coefficients, the near-wall effect can be enhanced. When near-wall particles move in the direction parallel to the plane wall, there is a lift force which is perpendicular to the wall due to the near-wall effect and the shear flow. For <em>T</em><sub>w</sub>/<em>T</em> &lt; 1, the lift force for the near-wall particles is in the direction against the wall. While for <em>T</em><sub>w</sub>/<em>T</em> &gt; 1, the force is in the direction away from the plane wall. The findings presented in this paper can provide theoretical guidance for the application of near-wall particles in shear flows.</p></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"181 ","pages":"Article 106427"},"PeriodicalIF":3.9,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141479971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of some flow-related properties of diffusive aerosols along a tube 沿管扩散气溶胶的一些流动相关特性的演变
IF 3.9 3区 环境科学与生态学
Journal of Aerosol Science Pub Date : 2024-06-18 DOI: 10.1016/j.jaerosci.2024.106428
M. Alonso
{"title":"Evolution of some flow-related properties of diffusive aerosols along a tube","authors":"M. Alonso","doi":"10.1016/j.jaerosci.2024.106428","DOIUrl":"https://doi.org/10.1016/j.jaerosci.2024.106428","url":null,"abstract":"<div><p>This is the third of a series of papers dealing with the behavior of Brownian aerosol particles immersed in a laminar fluid flow. The evolution along the tube of the distributions of particle radial positions (RPD), particle residence time (RTD), and particle mean axial velocity (MAVD) were determined by Monte Carlo (MC) simulation of particles trajectories. The RPD and particle penetration was also determined by numerical solution of the advection-diffusion equation (ADE) with negligible particle axial diffusion. The fairly good agreement shown between the results obtained by these two methods justifies our confidence on the use of the MC technique to determine other particle properties, as MAVD and RTD, for which the corresponding differential equation is yet unknown. Flow-related properties of the aerosol, such as penetration and residence time, are mainly determined by its MAVD. The MAVD is intimately related to the RPD; the latter evolves in such a manner that the surviving particles tend to accumulate nearer the tube axis and farther from the wall. When the fluid local velocity depends on the spatial location, the mean particle axial velocity increases as the aerosol flows downstream the tube, and its value can be considerably larger than the mean fluid velocity, in spite that no external force is acting on the particle. A direct consequence of this counterintuitive fact is that the mean aerosol residence time in the tube can be much smaller, by a factor of ∼0.65, than that of the fluid for even moderate values of the particle diffusion coefficient. This asymptotic value of the aerosol mean residence time can be predicted using the ADE in conjunction with a simple estimation model proposed here. If the fluid velocity is constant within the tube (uniform or plug flow), the mean particle axial velocity is everywhere equal to the fluid velocity, and particles and fluid spend the same time to traverse the tube. The larger the departure of the fluid velocity profile from uniformity, the larger the difference of mean axial velocity and mean residence time between particles and fluid.</p></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"181 ","pages":"Article 106428"},"PeriodicalIF":3.9,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021850224000958/pdfft?md5=e10c92e0f839a41cee58e8e9df80626d&pid=1-s2.0-S0021850224000958-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141439135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of particle deposition on collection efficiency of electret fibers 颗粒沉积对驻极体纤维收集效率的影响
IF 3.9 3区 环境科学与生态学
Journal of Aerosol Science Pub Date : 2024-06-18 DOI: 10.1016/j.jaerosci.2024.106426
A. Kumar , S. Gautam , S. Atri , H.V. Tafreshi , B. Pourdeyhimi
{"title":"The impact of particle deposition on collection efficiency of electret fibers","authors":"A. Kumar ,&nbsp;S. Gautam ,&nbsp;S. Atri ,&nbsp;H.V. Tafreshi ,&nbsp;B. Pourdeyhimi","doi":"10.1016/j.jaerosci.2024.106426","DOIUrl":"https://doi.org/10.1016/j.jaerosci.2024.106426","url":null,"abstract":"<div><p>This study presents a microscale simulation method that allows one to study the impact of particle loading on the aerosol capture efficiency of an electrostatically charged filter. This was done by considering a bipolarly charged fiber loaded with different amounts of neutral and charged particles with a diameter of 300 nm. The simulations predicted the deposition pattern of the aerosol particles as well as their impact on the electrostatic field of the bipolar fiber. The particle-loaded fiber was then challenged with aerosol particles in the range of 50 nm to 1 μm and with different charge polarities to study how the electrostatic field of the deposited particles interacts with that of the fiber to attract or repel the incoming airborne particles. More specifically, our simulations revealed that particle deposition can enhance the capture efficiency of a bipolar fiber when it is challenged with small particles (smaller than about 400 nm) regardless of the charge polarity of the airborne or deposited particles. The numerical simulations reported in this paper were conducted using the ANSYS CFD code enhanced with in-house subroutines to superimpose the electrostatic field of the deposited particles to that of the bipolar fiber and to include Brownian, polarization, and Coulomb forces in particle trajectory calculations.</p></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"181 ","pages":"Article 106426"},"PeriodicalIF":3.9,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrospray plume divergence: Background pressure influence 电喷雾羽流发散:背景压力的影响
IF 3.9 3区 环境科学与生态学
Journal of Aerosol Science Pub Date : 2024-06-15 DOI: 10.1016/j.jaerosci.2024.106417
{"title":"Electrospray plume divergence: Background pressure influence","authors":"","doi":"10.1016/j.jaerosci.2024.106417","DOIUrl":"10.1016/j.jaerosci.2024.106417","url":null,"abstract":"<div><p>The influence of background pressure on electrospray plume evolution is observed by simulating the emission and propagation of an electrospray particle population into an electric field at a range of relevant background pressures. Differences in plume evolution from atmospheric pressure to one hundredth of atmospheric pressure are evident from plume characteristics such as (1) the overall domain of the resulting plumes and (2) the terminal angle at a downstream terminus of one standard deviation and three standard deviations of particle number density. Plume divergence and terminal angle are shown to correlate strongly with background pressure for pressures above which plume-background collision rates are significant, consistent with experimental observations of increased plume divergence with increased background pressure. The results suggest a simple expression for the pressure below which a system achieves minimum plume divergence: <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msub><mo>=</mo><mi>k</mi><mi>T</mi><mo>/</mo><mn>7</mn><mo>.</mo><mn>7299</mn><msub><mrow><mi>σ</mi></mrow><mrow><mi>f</mi><mi>l</mi></mrow></msub><mi>d</mi></mrow></math></span> for a system of temperature <span><math><mi>T</mi></math></span>, background fluid molecules with cross-section <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>f</mi><mi>l</mi></mrow></msub></math></span>, and plume species of diameter <span><math><mi>d</mi></math></span>.</p></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"181 ","pages":"Article 106417"},"PeriodicalIF":3.9,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141392073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aerosol dosimetry in the whole conducting zone of a murine left-lung using CF-PD and LSFM images 利用 CF-PD 和 LSFM 图像测量小鼠左肺整个传导区的气溶胶剂量
IF 3.9 3区 环境科学与生态学
Journal of Aerosol Science Pub Date : 2024-06-13 DOI: 10.1016/j.jaerosci.2024.106425
Mohsen Estaji , Malikeh Nabaei , Lin Yang , Otmar Schmid , Ali Farnoud
{"title":"Aerosol dosimetry in the whole conducting zone of a murine left-lung using CF-PD and LSFM images","authors":"Mohsen Estaji ,&nbsp;Malikeh Nabaei ,&nbsp;Lin Yang ,&nbsp;Otmar Schmid ,&nbsp;Ali Farnoud","doi":"10.1016/j.jaerosci.2024.106425","DOIUrl":"10.1016/j.jaerosci.2024.106425","url":null,"abstract":"<div><p>Aerosol dosimetry in respiratory airways is relevant for pulmonary drug delivery and inhalation toxicology. Consequently, computational fluid-particle dynamics (CF-PD) modelling of pulmonary aerosol delivery is an active research field. Additionally, mice are the most commonly used animals in medical research. Technological advances have provided information on whole mice lung morphologies with unprecedented high resolution. Therefore, in this study, we used high-resolution light sheet fluorescent microscopy (LSFM) images of a healthy C57BL/6 mouse lung with a constant air flow rate of 72 ml/min, to extract an anatomical 3-dimensional (3D) geometry of the entire airway tree of the left lung from the primary bronchi to the most distal bronchioles excluding the trachea. The airways were segmented based on an order- and generation-based method. Also, to compare the morphological data and regional deposition, a generation-based investigation including 25 generations was employed in the present model. One-way coupling of CF-PD modeling was applied to model an intubated and mechanically-ventilated mouse. Maximum values of the velocity and vorticity magnitude of 3.2 m/s and 200,000 1/s were reached in the second order, respectively, and maximum pressure and wall shear stress levels were 30 Pa and 3.5 Pa, respectively. Finally, order- and generation-based particle deposition efficiency and dose per lung area were obtained for the particle size range of 1 μm ≤ d<sub>p</sub> ≤ 10 μm yielding pronounced hotspot deposition patterns mainly near the proximal bifurcations. The results showed a positive correlation between deposition efficiency and particle size due to a size-dependent increase in inertial and gravitational effects. Maximum regional deposition and normalized dose was seen for 10 μm particles in the 1st order of the murine left lung. Smaller peak sizes of deposition efficiency were seen in the third and fourth orders of the mouse left lung due to almost complete loss of the largest particles in lower order airways. It also justifies the close to zero deposition efficiency in the highest orders (fifth to sixth). Both lung morphology as well as total and regional aerosol deposition showed reasonably good agreement with empirical data from the literature. The present CF-PD model with accurate realistic lung morphology, improves our knowledge of airway aerosol deposition hotspots. The obtained modeling method and the qualitative results can be implemented on human airways.</p></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"181 ","pages":"Article 106425"},"PeriodicalIF":3.9,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141409202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信