Nishant Bhatta , Sashank Gautam , Amit Kumar , Hooman V. Tafreshi , Behnam Pourdeyhimi
{"title":"Novel quasi-static method to simulate collection efficiency and pressure drop of coalescing filters","authors":"Nishant Bhatta , Sashank Gautam , Amit Kumar , Hooman V. Tafreshi , Behnam Pourdeyhimi","doi":"10.1016/j.jaerosci.2024.106486","DOIUrl":"10.1016/j.jaerosci.2024.106486","url":null,"abstract":"<div><div>Coalescence filtration is the removal of dispersed droplets from a gas or from an immiscible liquid using a fibrous filter. Coalescing media are designed to capture the droplets, allow them to coalesce with one another and grow, and let them drain from the filter under gravity. Conducting numerical simulation to predict the pressure drop and collection efficiency of a coalescing filter is a computational challenge. The current paper presents a novel approach to simplify this highly transient multi-phase problem and to thereby propose a practical and expedited approach to design such filtration media. This was achieved by first developing a MATLAB code to perform Pore Morphology Method (PMM) simulations of fluid saturation in the filter and then by using the resulting 3-D saturation profiles in ANSYS (enhanced with a series of in-house subroutines) to conduct aerosol filtration simulations. Our simulations, interestingly, revealed that collection efficiency of a coalescing filter can decrease with increasing fluid saturation in the media, while its pressure drop can only increase. Our simulation results are analyzed in detail and are discussed in the context of prior studies reported in the literature.</div></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"183 ","pages":"Article 106486"},"PeriodicalIF":3.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yunfeng Chen , Jia Lu , Qingni Li , Wanlu Hua , Wenjin Zhang , Chunyang Li , Yuanlang Liu , Zejun Wang
{"title":"Influencing factors analysis of infectious SARS-CoV-2 aerosols sampling","authors":"Yunfeng Chen , Jia Lu , Qingni Li , Wanlu Hua , Wenjin Zhang , Chunyang Li , Yuanlang Liu , Zejun Wang","doi":"10.1016/j.jaerosci.2024.106487","DOIUrl":"10.1016/j.jaerosci.2024.106487","url":null,"abstract":"<div><div>Assessing the potential infectivity of airborne viruses is critical for evaluating the risk of their transmission through air. This study investigated the factors influencing the collection of infectious SARS-CoV-2 aerosols using three common aerosol samplers: the impactor sampler AGI-30, the SKC Biosampler, and a cyclone sampler WA-400III. It was found that the sampling process over time significantly impacted the infectivity of SARS-CoV-2 captured in the sampler, and the infectivity loss of different SARS-CoV-2 variants in the process varied. Additionally, adding newborn calf serum in the collection suspension could effectively preserve viral infectivity in the sampler. Further tests conducted under various ventilation occasions indicated that ventilation can reduce the virus concentration in the environment and rapidly clear viral particles after aerosol generation. Although the flow rate of WA-400III is higher, it only could collect higher concentrations of viral RNA instead of live viruses than AGI-30 or SKC Biosampler when aerosol was generated constantly in the environment. After aerosol generation stopped, the WA-400III collected more infectious viruses and viral RNA. This study highlights the impact of the sampling process on captured virus should be assessed and protective agent is needed to preserve viral viability. And it is crucial to select appropriate sampler based on environmental characteristics and research objectives for obtaining optimal results. The AGI-30 and SKC Biosampler are preferable for collecting infectious viruses in environments with high aerosol concentrations, while the cyclone sampler WA-400III is more effective for collecting viral nucleic acids and enriching virus samples in confined spaces with lower viral loads.</div></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"183 ","pages":"Article 106487"},"PeriodicalIF":3.9,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-linear optics for an online probing of the specific surface area of nanoparticles in the aerosol phase","authors":"M. Joret, S. Idlahcen, M. Mazur, J. Yon","doi":"10.1016/j.jaerosci.2024.106484","DOIUrl":"10.1016/j.jaerosci.2024.106484","url":null,"abstract":"<div><div>In the present study the generation of non-linear optical (NLO) effects, such as second harmonic generation (SHG), by black carbon particles, also named soot, and by other types of nanoparticles in aerosol phase is quantified and analysed. Its potential for measuring the specific surface area of an aerosol is put forward. SHG is a Non Linear Optical phenomenon that is typically used in biosciences and fundamental physics and has shown to have large potential for the investigation of surface sensitive phenomena. It exists in two forms, coherent SHG and incoherent SHG, also named Hyper Rayleigh Scattering (HRS). While applications on particles in solution or organic molecules located on the surface of droplets exist, the SHG naturally induced by solid nanoparticles in aerosol phase without any SHG enhancing additive has neither been detected nor quantified yet. The present work aims at narrowing this gap by exposing a jet of well-characterized nanoaerosols to a femtosecond laser featuring high peak pulse energies allowing to induce NLO phenomena. The experiments are carried out in an innovative optical setup allowing to analyse the NLO response resolved in time, wavelength and angle, thus having the capability to isolate SHG from other phenomena, such as laser filamentation. The optical setup was calibrated in order to quantify the generated signal power and optimized in order to have a high sensitivity and in order to avoid NLO generation from its own optical elements. The results confirm that soot particles, as well as DEHS droplets and arc generated carbon nanoparticles, feature SHG at intensities that are more than 7 orders of magnitude smaller than that of static light scattering. SHG depends in particular on aggregate and/or monomer size. On the other hand, SHG induced by soot does not seem to depend on the organic or elementary carbon content. The experiments also show that the detected NLO signal increases linearly with particle surface area, independently of the particle shape or composition. Finally, the angular response of NLO signal is fundamentally different from that of linear scattering. Due to the isotropic nature of the angular response, the observed SHG signal is probably non-coherent and thus related to Hyper Raleigh Scattering. These findings show the potential of non-linear optics, in particular to quantify in situ the specific surface of an aerosol. Giving access to this information which is crucial in the evaluation of toxicity of aerosols, the present work can thus give way to a new class of laser based diagnostics for aerosols.</div></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"183 ","pages":"Article 106484"},"PeriodicalIF":3.9,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Verónica Moreno-Martín , Maria López , Cristian Roldan , David Bou , Sonia Fraga , João Paulo Teixeira , Ana López-Lilao , Vicenta Sanfélix , Raúl Moliner , Eliseo Monfort , Mar Viana
{"title":"Potential human exposure and risks of incidental nanoparticles released during rotary dry cutting of ceramic tiles","authors":"Verónica Moreno-Martín , Maria López , Cristian Roldan , David Bou , Sonia Fraga , João Paulo Teixeira , Ana López-Lilao , Vicenta Sanfélix , Raúl Moliner , Eliseo Monfort , Mar Viana","doi":"10.1016/j.jaerosci.2024.106485","DOIUrl":"10.1016/j.jaerosci.2024.106485","url":null,"abstract":"<div><div>Rotary dry cutting and rectifying of ceramic tiles are sources of fine particulate matter (PM2.5) and nanoparticles (NPs). These activities are typically carried out inside industrial facilities during the manufacturing process, as well as outdoors and in residential indoor spaces during the installation phase, where mitigation measures are seldom implemented. This work aimed to understand the particle formation and release mechanisms, as well as particle properties (physical, chemical, and toxicological) and potential impacts on human health and the environment, for particles generated during ceramic tile rotary dry cutting operations. Aerosols were characterised in terms of particle number and mass concentrations, chemical composition, morphology and <em>in vitro</em> cytotoxicity. Two types of commercially available and representative tiles were tested in controlled chamber experiments: porous and non-porous ceramic body tiles (referred to in this work as A and B types, respectively). Results evidenced the release of fine particles and NPs during dry cutting of both materials, in comparable concentrations (20.000–45.000/cm<sup>3</sup>, 1-min average). However, the particle size distribution was significantly finer from A tiles (70% of the particle number concentration was nanosized (<100 nm)) in comparison to B tiles (<20%). While airborne particle chemical profiles were similar for both types of materials in the coarser size fractions (>0.6 μm), in the smaller size fractions (<0.6 μm) larger differences were observed. The chemical composition of airborne aerosols was consistent with that of the deposited dust. <em>In vitro</em> cytotoxicity responses evidenced statistically significant differences between exposure to aerosols from both types of tiles: cell viability was lower after exposure to aerosols from A tiles (50% at the original concentration) compared to those from B tiles, which exhibited high cell viability regardless of the aerosol concentration. Overall, results evidenced NP formation and release during rotary dry cutting of ceramic tiles, varying physical-chemical and cytotoxic profiles as a function of the material being processed, and highlight this activity as a potential health hazard in scenarios where prevention and mitigation measures are not implemented.</div></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"183 ","pages":"Article 106485"},"PeriodicalIF":3.9,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Konstantina Vasilatou , Kenjiro Iida , Mohsen Kazemimanesh , Jason Olfert , Hiromu Sakurai , Timothy A. Sipkens , Gregory J. Smallwood
{"title":"Aerosol physical characterization: A review on the current state of aerosol documentary standards and calibration strategies","authors":"Konstantina Vasilatou , Kenjiro Iida , Mohsen Kazemimanesh , Jason Olfert , Hiromu Sakurai , Timothy A. Sipkens , Gregory J. Smallwood","doi":"10.1016/j.jaerosci.2024.106483","DOIUrl":"10.1016/j.jaerosci.2024.106483","url":null,"abstract":"<div><div>Aerosols have a wide-ranging impact on the climate, air quality, human health, and agriculture. Despite the ongoing advances in aerosol measurement science and technology, the uncertainties in quantifying aerosol physical properties remain significant in many applications. The accurate characterization of airborne particles - including number and mass concentration, size distribution and light absorption - is critical for understanding their behavior in the atmosphere and environmental fate. We delve into the physical characterization of aerosols, highlighting the measurement and documentary standards that underpin measurement traceability and enable comparison of data collected by instruments based on measurement principles at different times or locations. In particle metrology, recent advances have led to sophisticated primary measurement standards, with relative expanded measurement uncertainties down to 1.1 % (coverage factor <em>k</em> = 2; 95 % confidence interval). These standards enable time- and cost-effective instrument calibration to support research, industry, and legislation. We discuss documentary standards and regulations related to air quality and control of particle emissions from vehicles, aviation, shipping, and stationary sources, with the aim to increase awareness of these documents and underline differences in measurement protocols in different sub-fields of aerosol sciences. Importantly, we emphasize the need for further harmonization of measurement procedures, providing specific examples and making suggestions towards this goal. This review, with its comprehensive coverage of aerosol measurement and documentary standards across different sub-disciplines, can serve as a reliable guide for scientists and regulators interested in improving the accuracy of their measurements.</div></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"183 ","pages":"Article 106483"},"PeriodicalIF":3.9,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vahid Goodarzi Ardakani , Mojtaba Dorri , Bin Zang , Angela H. Nobbs , Stephen Cross , Alberto M. Gambaruto
{"title":"Computational and experimental investigation of an aerosol extraction device for use in dentistry","authors":"Vahid Goodarzi Ardakani , Mojtaba Dorri , Bin Zang , Angela H. Nobbs , Stephen Cross , Alberto M. Gambaruto","doi":"10.1016/j.jaerosci.2024.106478","DOIUrl":"10.1016/j.jaerosci.2024.106478","url":null,"abstract":"<div><div>Medical procedures carry a high risk of pathogen transmission from patients to healthcare providers, the clinic environment, and subsequent patients. While measures such as patient mask wearing can help to reduce this danger, they may not always be possible, especially in dental treatments that need access to patients’ airways. A protective device was designed and built to effectively confine airborne particles during medical procedures without interfering with medical operations. The device is evaluated and its working principles discussed.</div><div>The device resembles a dome and comprises of four primary mechanisms to inhibit the spread of potentially infected aerosols during aerosol-generating procedures (AGPs) in dental surgery: (i) a physical barrier; (ii) air curtains; (iii) an extraction point; (iv) a sustained airflow ingress. Evaluation is carried out using experiments in laboratory and clinical settings, as well as high-resolution numerical simulations.</div><div>Results of the numerical simulations of the prototype device show over 99% capture in its design configuration. The results from experiments also report high efficiency. A detailed analysis of the device and recommendations for future development are provided. The results from tests in the clinical setting will be provided in detail in another paper.</div></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"183 ","pages":"Article 106478"},"PeriodicalIF":3.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Collision frequencies across collision regimes in two-component systems","authors":"Anjul Pandey, Andreas Kronenburg","doi":"10.1016/j.jaerosci.2024.106480","DOIUrl":"10.1016/j.jaerosci.2024.106480","url":null,"abstract":"<div><div>Agglomeration is the most important growth process in particle systems but modelling efforts typically assume mono-disperse primary particle distributions for the closure of the collision frequency that determines the growth rates. Real systems such as sooting flames, however, involve poly-disperse primary particle distributions. Also, systems with multiple components, where primary particles are of distinct but different sizes, cannot be treated as mono-disperse. Here, we introduce bi-disperse primary particle distributions and use Langevin dynamics simulations to develop closures for the collision kernels that are applicable over a wide range of agglomerate characteristics. The simulations cover fractal dimensions from 1.4 to 2.2, primary particle diameters from 5 nm to 50 nm, primary particle size ratios from 2 to 10 and agglomerates of up to a size of 200 primary particles with varying particle compositions. The Langevin dynamics simulations cover all collision regimes from ballistic to diffusive and allow to deduce expressions for the respective collision diameters, the hydrodynamic radii and the projected area as functions of particle characteristics. It is shown that existing expressions for the transition regime that were developed for the modelling of the collision kernel of spherical particles continue to hold for collision kernels of agglomerates in two-component systems under the condition that the collision diameters and drag coefficients are modelled accurately. An example ‘a posteriori’ simulation for a particle size ratio of 6 uses the population balance equation and demonstrates that bi-variate kernels are needed for the accurate prediction of the growth rates. Errors in predicted number density at the end of the simulations are less than 12 % while mono-variate kernels developed for mono-disperse primary particle systems overpredict the growth rate by 46%.</div></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"183 ","pages":"Article 106480"},"PeriodicalIF":3.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced organic aerosol formation induced by inorganic aerosol formed in laboratory photochemical experiments","authors":"Ahsan Ali, Seonghyun Kim, Hyunah Lee, Ho-Jin Lim","doi":"10.1016/j.jaerosci.2024.106481","DOIUrl":"10.1016/j.jaerosci.2024.106481","url":null,"abstract":"<div><div>Atmospheric inorganic gases such as NO<sub>x</sub>, SO<sub>2</sub>, and NH<sub>3</sub> have diverse effects on the formation of secondary organic aerosol (SOA). A comprehensive investigation is necessary to fully understand the atmospheric processing of SOA. In this study, we examined the photooxidation of xylene isomers in the presence of inorganic gases using a combined facility comprising a smog chamber (SC) and an oxidation flow reactor (OFR). SC experiments at higher xylene concentrations and humid conditions revealed SOA yields of 37%, 39%, and 39% with NH<sub>3</sub>, compared to 15%, 11%, and 13% without NH<sub>3</sub>, for o-, m-, and p-xylene, respectively. This increase was primarily attributed to the enhanced formation of secondary inorganic aerosol (SIA) in the presence of NH<sub>3</sub>, consequently increasing aerosol surface area and aerosol water content (AWC). Vapor wall losses (VWL), estimated using a kinetic method, were substantial even with the elevated aerosol surface area provided by SIA. Additional photochemical reactions in the OFR showed a gradual increase in SOA mass and yield over an atmospheric equivalent aging time of 0.5–4.0 days. In the OFR, the SOA yield increased significantly when negligible xylene remained after SC reactions. Fresh SOA formation in the OFR might have decreased the oxygen-to-carbon ratio and oxidation state of carbon, which gradually increased with increasing OFR aging. High OH radical exposure in the OFR likely caused the photodegradation of SC-formed ON, as evidenced by an abrupt decrease in the NO<sup>+</sup>/NO<sub>2</sub><sup>+</sup> ratio measured. This study indicates that SOA formation potential of the aromatic hydrocarbon is highly underestimated without considering the combined effects of inorganic gases along with aging.</div></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"183 ","pages":"Article 106481"},"PeriodicalIF":3.9,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of a source-term migration model for a large bubble formed in a core disruptive accident","authors":"Zeren Zou, Wei Liu, Koji Morita","doi":"10.1016/j.jaerosci.2024.106482","DOIUrl":"10.1016/j.jaerosci.2024.106482","url":null,"abstract":"<div><div>Because sodium-cooled fast reactors are designed with high inherent safety in mind, the probability of a core disruptive accident (CDA) is extremely low. However, from a defense-in-depth perspective, the study of CDA sequences is still worthwhile to assure the safety and reliability of reactors. During a CDA, a large bubble rapidly expands inside the sodium pool, rises from the core, and covers the gas region, providing a potential migration path for source terms (radioactive materials present within the containment barriers). Source terms released initially within the cover-gas region after a few hundred milliseconds are called instantaneous source terms. We propose here an instantaneous source-term migration model that provides a simplified evaluation of the amount of source terms absorbed by coolant sodium during the ascent of the CDA bubble. In the model, the particle motion within the CDA bubble obtained from the basic momentum equation is used to calculate the amount of source terms escaping from the bubble interface. In addition, a model analogous to aerosol scavenging by precipitation is used to assess the amount of source terms absorbed by droplets present in the bubble, especially the entrained sodium droplets that form during rapid expansion of the CDA bubble. The model is further validated by a previous source term migration experiment in which a large high-pressure bubble expands and rises in a sodium pool. Good agreement with the measured retention factor of a source term demonstrates the reliability of the developed model. Given these results, some key parameters are selected for a sensitivity analysis.</div></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"183 ","pages":"Article 106482"},"PeriodicalIF":3.9,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thi-Cuc Le , Yao-Yu Tsai , Chia C. Wang , Chuen-Jinn Tsai
{"title":"Single-stage NBI sampler for PM1 mass and five-stage NBI-NMCI sampler for PM1 mass distribution measurements","authors":"Thi-Cuc Le , Yao-Yu Tsai , Chia C. Wang , Chuen-Jinn Tsai","doi":"10.1016/j.jaerosci.2024.106479","DOIUrl":"10.1016/j.jaerosci.2024.106479","url":null,"abstract":"<div><div>In recent years, concerns about the health and environmental risks associated with PM<sub>1</sub> particles have increased. However, existing PM<sub>1</sub> sampling instruments remain to be improved mainly because their PM<sub>1</sub> inlets have particle loading and bounce issues. To address these challenges, PM<sub>1</sub> inlets based on the Non-Bouncing Impactor (NBI) technique were developed. These inlets employ vacuum oil-wetted glass fiber filter (GFF) substrates to eliminate particle bounce and incorporate a daily vacuum oil injection to prevent particle loading. The 16.7 L/min PM<sub>1</sub> NBI, modified from the PM<sub>2.5</sub> M-WINS design with a reduced diameter of the single nozzle, was designed to adapt readily with current standard sampling and monitoring systems. The cut-size (D<sub>pa50</sub>) of 0.99 ± 0.02 μm was determined by considering the effects of Reynold number and the ratio of jet-to-plate distance and nozzle diameter. Field tests comparing the 16.7 L/min PM<sub>1</sub> NBI sampler to the 9-stage NCTU Micro-orifice Cascade Impactor (NMCI<sub>9</sub>) revealed small sampling biases, with a mean difference of +0.26 ± 2.28 μg/m<sup>3</sup> for PM<sub>1</sub> measurements when silicone oil-coated aluminum foil (AF) and GFF-AF were used in the NMCI<sub>9</sub>. The NBI with the oil-wetted GFF substrate effectively removed particles larger than 1.0 μm, resulting in more accurate PM<sub>1</sub> mass concentration measurements. Additionally, the development of a 5-stage NMCI with the 30 L/min PM<sub>1</sub> NBI as the first stage enabled detailed measurement of PM<sub>1</sub> mass distribution in two modes, which was challenging when measuring the entire mass distribution of ambient aerosols. The distribution of size-dependent water-soluble inorganic ions in PM<sub>1</sub> showed dominance of SO<sub>4</sub><sup>2−</sup> and NH<sub>4</sub><sup>+</sup> in PM<sub>1</sub> compared to PM<sub>2.5</sub>. In summary, the PM<sub>1</sub> NBI enhances accuracy for long-term atmospheric sampling by addressing particle loading and bounce, making it a more reliable standard sampling instrument.</div></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"183 ","pages":"Article 106479"},"PeriodicalIF":3.9,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}