火花放电法制备带电超细纳米颗粒

IF 2.9 3区 环境科学与生态学 Q2 ENGINEERING, CHEMICAL
Anton Patarashvili, Alexey Efimov, Dmitry Maslennikov, Matthew Ivanov, Dmitry Labutov, Ekaterina Kameneva, Olesya Vershinina, Victor Ivanov
{"title":"火花放电法制备带电超细纳米颗粒","authors":"Anton Patarashvili,&nbsp;Alexey Efimov,&nbsp;Dmitry Maslennikov,&nbsp;Matthew Ivanov,&nbsp;Dmitry Labutov,&nbsp;Ekaterina Kameneva,&nbsp;Olesya Vershinina,&nbsp;Victor Ivanov","doi":"10.1016/j.jaerosci.2025.106700","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an optimized spark-discharge generator circuit that enhances unipolar ion production (up to 10<sup>9</sup> ions/cm<sup>3</sup>) without any ionizers, enabling efficient generation of charged ultrafine nanoparticles (&lt;5 nm). By sustaining high voltage on both electrodes during discharge, the system achieves stable and controllable unipolar ionization. Systematic evaluation of key parameters (interelectrode gap, electrode material, discharge frequency, capacitance, gas flow/type, and voltage polarity) reveals optimal conditions for ion generation. Deposition experiments on silicon substrates and TEM grids confirm a 4-fold increase in sub-5 nm charged nanoparticle production compared to conventional designs, as validated by TEM, SEM and optical profilometry.</div></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"191 ","pages":"Article 106700"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Charged ultrafine nanoparticle synthesis by spark-discharge\",\"authors\":\"Anton Patarashvili,&nbsp;Alexey Efimov,&nbsp;Dmitry Maslennikov,&nbsp;Matthew Ivanov,&nbsp;Dmitry Labutov,&nbsp;Ekaterina Kameneva,&nbsp;Olesya Vershinina,&nbsp;Victor Ivanov\",\"doi\":\"10.1016/j.jaerosci.2025.106700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents an optimized spark-discharge generator circuit that enhances unipolar ion production (up to 10<sup>9</sup> ions/cm<sup>3</sup>) without any ionizers, enabling efficient generation of charged ultrafine nanoparticles (&lt;5 nm). By sustaining high voltage on both electrodes during discharge, the system achieves stable and controllable unipolar ionization. Systematic evaluation of key parameters (interelectrode gap, electrode material, discharge frequency, capacitance, gas flow/type, and voltage polarity) reveals optimal conditions for ion generation. Deposition experiments on silicon substrates and TEM grids confirm a 4-fold increase in sub-5 nm charged nanoparticle production compared to conventional designs, as validated by TEM, SEM and optical profilometry.</div></div>\",\"PeriodicalId\":14880,\"journal\":{\"name\":\"Journal of Aerosol Science\",\"volume\":\"191 \",\"pages\":\"Article 106700\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aerosol Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021850225001776\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Science","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021850225001776","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种优化的火花放电发生器电路,可以在没有任何电离器的情况下提高单极离子的产生(高达109个离子/cm3),从而有效地产生带电的超细纳米颗粒(< 5nm)。通过在放电过程中保持两个电极上的高电压,系统实现了稳定可控的单极电离。对关键参数(电极间隙、电极材料、放电频率、电容、气体流量/类型和电压极性)的系统评估揭示了离子生成的最佳条件。在硅衬底和透射电镜网格上的沉积实验证实,与传统设计相比,在5纳米以下带电纳米颗粒的产量增加了4倍,这一点得到了透射电镜、扫描电镜和光学轮廓术的验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Charged ultrafine nanoparticle synthesis by spark-discharge

Charged ultrafine nanoparticle synthesis by spark-discharge
This study presents an optimized spark-discharge generator circuit that enhances unipolar ion production (up to 109 ions/cm3) without any ionizers, enabling efficient generation of charged ultrafine nanoparticles (<5 nm). By sustaining high voltage on both electrodes during discharge, the system achieves stable and controllable unipolar ionization. Systematic evaluation of key parameters (interelectrode gap, electrode material, discharge frequency, capacitance, gas flow/type, and voltage polarity) reveals optimal conditions for ion generation. Deposition experiments on silicon substrates and TEM grids confirm a 4-fold increase in sub-5 nm charged nanoparticle production compared to conventional designs, as validated by TEM, SEM and optical profilometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Aerosol Science
Journal of Aerosol Science 环境科学-工程:化工
CiteScore
8.80
自引率
8.90%
发文量
127
审稿时长
35 days
期刊介绍: Founded in 1970, the Journal of Aerosol Science considers itself the prime vehicle for the publication of original work as well as reviews related to fundamental and applied aerosol research, as well as aerosol instrumentation. Its content is directed at scientists working in engineering disciplines, as well as physics, chemistry, and environmental sciences. The editors welcome submissions of papers describing recent experimental, numerical, and theoretical research related to the following topics: 1. Fundamental Aerosol Science. 2. Applied Aerosol Science. 3. Instrumentation & Measurement Methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信