Taewon T. Han , Atila Lima , Dong Ming He , Gary Brewer , Gediminas Mainelis
{"title":"Development of an advanced personal nasal sampler (PNS) to access exposure to bioaerosols","authors":"Taewon T. Han , Atila Lima , Dong Ming He , Gary Brewer , Gediminas Mainelis","doi":"10.1016/j.jaerosci.2025.106699","DOIUrl":null,"url":null,"abstract":"<div><div>This research aimed to advance the development of a novel personal nasal sampler (PNS). PNS attaches to a user's nostrils and utilizes the user's breathing to capture airborne infectious agents on an advanced filter inside the PNS, thereby directly measuring actual personal exposure to those agents. Here, we designed, developed, and tested a hybrid filter (HF) to be used in PNS. The HF was designed by overlaying electrospun polyvinylidene fluoride (PVDF) nanofibers on a selected substrate for different durations. A suitable substrate was selected from meltblown and spunbond fabric filters of different densities, a MERV-5 carbon filter, and a pulmonary function test filter (PTF) based on their collection efficiencies and pressure drop. The candidate hybrid filters (HF) were then challenged with Arizona Road Dust particles aerosolized from a 2 % w/w slurry. The HF was 12.5 mm in diameter, corresponding to an average nostril diameter, and was operated at 5 and 10 L/min flow rates to simulate sedentary conditions and moderate exertion, respectively. The final HF showed collection efficiency of 60–70 % at 0.2–0.3 μm (most penetrating particle size) and >90 % for particles <0.05 μm and >0.7 μm. Its pressure drop was about 200 Pa. When challenged with enveloped bacteriophage Phi6, this HF showed recovery efficiencies of 99 % and 80 % at 5 and 10 L/min flow rates, respectively. In the next steps, the HF will be incorporated into a biocompatible holder and extensively tested in laboratory and field conditions for its ability to measure exposure to bioaerosols.</div></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"191 ","pages":"Article 106699"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Science","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021850225001764","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This research aimed to advance the development of a novel personal nasal sampler (PNS). PNS attaches to a user's nostrils and utilizes the user's breathing to capture airborne infectious agents on an advanced filter inside the PNS, thereby directly measuring actual personal exposure to those agents. Here, we designed, developed, and tested a hybrid filter (HF) to be used in PNS. The HF was designed by overlaying electrospun polyvinylidene fluoride (PVDF) nanofibers on a selected substrate for different durations. A suitable substrate was selected from meltblown and spunbond fabric filters of different densities, a MERV-5 carbon filter, and a pulmonary function test filter (PTF) based on their collection efficiencies and pressure drop. The candidate hybrid filters (HF) were then challenged with Arizona Road Dust particles aerosolized from a 2 % w/w slurry. The HF was 12.5 mm in diameter, corresponding to an average nostril diameter, and was operated at 5 and 10 L/min flow rates to simulate sedentary conditions and moderate exertion, respectively. The final HF showed collection efficiency of 60–70 % at 0.2–0.3 μm (most penetrating particle size) and >90 % for particles <0.05 μm and >0.7 μm. Its pressure drop was about 200 Pa. When challenged with enveloped bacteriophage Phi6, this HF showed recovery efficiencies of 99 % and 80 % at 5 and 10 L/min flow rates, respectively. In the next steps, the HF will be incorporated into a biocompatible holder and extensively tested in laboratory and field conditions for its ability to measure exposure to bioaerosols.
期刊介绍:
Founded in 1970, the Journal of Aerosol Science considers itself the prime vehicle for the publication of original work as well as reviews related to fundamental and applied aerosol research, as well as aerosol instrumentation. Its content is directed at scientists working in engineering disciplines, as well as physics, chemistry, and environmental sciences.
The editors welcome submissions of papers describing recent experimental, numerical, and theoretical research related to the following topics:
1. Fundamental Aerosol Science.
2. Applied Aerosol Science.
3. Instrumentation & Measurement Methods.