ChemPlusChem最新文献

筛选
英文 中文
Front Cover: Interfacial Preferential Adsorption and Molecular Mobility Restriction Enabling 3.2 V High Voltage Supercapacitor (ChemPlusChem 10/2025) 前盖:界面优先吸附和分子迁移率限制使能3.2 V高压超级电容器(ChemPlusChem 10/2025)
IF 2.8 4区 化学
ChemPlusChem Pub Date : 2025-10-09 DOI: 10.1002/cplu.70047
Yiheng Qi, Xuanchi Li, Chuang Bao, Jianhua Yan, Zheng Bo, Huachao Yang
{"title":"Front Cover: Interfacial Preferential Adsorption and Molecular Mobility Restriction Enabling 3.2 V High Voltage Supercapacitor (ChemPlusChem 10/2025)","authors":"Yiheng Qi,&nbsp;Xuanchi Li,&nbsp;Chuang Bao,&nbsp;Jianhua Yan,&nbsp;Zheng Bo,&nbsp;Huachao Yang","doi":"10.1002/cplu.70047","DOIUrl":"https://doi.org/10.1002/cplu.70047","url":null,"abstract":"<p>To enhance the operating voltage window of supercapacitors (central part), electrolyte engineering (bottom part) is implemented. Ethylene carbonate (EC, white balls) with superior electrochemical stability preferentially absorbs onto the activated carbon electrode (gray, left part). Meanwhile, EC restricts the molecular mobility of fragile acetonitrile (AN, green rugby-ball) through strong interactions(right part). The AN decomposition is effectively avoided and the systematic stability is enhanced. More information can be found in the Research Article by Huachao Yang and co-workers (DOI: 10.1002/cplu.202500367).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":"90 10","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cplu.70047","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145242869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drug Discovery Applications of Nitroso (Hetero)Arene Derivatives. 亚硝基(杂)芳烃衍生物的药物发现与应用。
IF 2.8 4区 化学
ChemPlusChem Pub Date : 2025-10-09 DOI: 10.1002/cplu.202500314
Silvia Roscales, Aurelio G Csáky
{"title":"Drug Discovery Applications of Nitroso (Hetero)Arene Derivatives.","authors":"Silvia Roscales, Aurelio G Csáky","doi":"10.1002/cplu.202500314","DOIUrl":"https://doi.org/10.1002/cplu.202500314","url":null,"abstract":"<p><p>Nitrosoarenes exhibit a variety of biological and pharmacological activities. This review uncovers their utility as therapeutic agents, which extends to oxidative stress regulation, DNA damage and repair interaction, cyclin-dependent kinase inhibitors, anticancer, antiviral, antibacterial, antifungal, antiparasitic, anti-inflammatory, and other miscellaneous effects. The synthesis of the most relevant targets is also reviewed.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202500314"},"PeriodicalIF":2.8,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145249081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical Characterization of Site-Specifically Metal-Modified DNA Films on Gold Electrode Surfaces. 金电极表面特异位点金属修饰DNA膜的电化学表征。
IF 2.8 4区 化学
ChemPlusChem Pub Date : 2025-10-09 DOI: 10.1002/cplu.202500494
Nils Flothkötter, Nils Lefringhausen, Daniela Escher, Jens Müller, Heinz-Bernhard Kraatz
{"title":"Electrochemical Characterization of Site-Specifically Metal-Modified DNA Films on Gold Electrode Surfaces.","authors":"Nils Flothkötter, Nils Lefringhausen, Daniela Escher, Jens Müller, Heinz-Bernhard Kraatz","doi":"10.1002/cplu.202500494","DOIUrl":"https://doi.org/10.1002/cplu.202500494","url":null,"abstract":"<p><p>The electrochemical characterization of DNA films with different base mismatches or with Cu<sup>II</sup>- or Ag<sup>I</sup>-mediated pairs was carried out to assess possible immobilization and interaction effects. Toward this end, 3-hydroxy-2-methylpyridin-4(1H)-one (H), imidazole-4-carboxylate (K), purine-6-carboxylate (P), and 7-deaza-6-pyrazolylpurine (D) were used as artificial metal-binding nucleobases. Cyclic voltammetry and square-wave voltammetry confirmed the immobilization of suitably modified oligonucleotides on Au electrodes. The incorporation of the metal ions into the base mismatches to form metal-mediated base pairs showed a negligible effect on the peak potentials. Ambiguous electrochemical impedance spectroscopy results were obtained for DNA with metal-mediated base pairs, as some duplexes showed no effect of metal ion addition, while others showed variable charge transfer resistance (R<sub>CT</sub>) with no discernible pattern. Notably, the formation of Ag<sup>I</sup>-mediated base pairs induced larger relative changes in R<sub>CT</sub> compared to Cu<sup>II</sup>-mediated base pairs. Amongst the latter, only strands containing the artificial nucleobase H showed statistically relevant sequence- and distance-dependent charge transfer changes upon metalation. The data indicate that neither nucleobase charge nor nucleobase size directly correlates with the charge transfer resistance, but suggest that changes in DNA film stiffness and hence permeability outweigh other effects.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202500494"},"PeriodicalIF":2.8,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145249083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solid Porous Materials for Selective Capture and Separation of Sulfur Hexafluoride (SF6). 固体多孔材料选择性捕获和分离六氟化硫(SF6)。
IF 2.8 4区 化学
ChemPlusChem Pub Date : 2025-10-08 DOI: 10.1002/cplu.202500376
Julio E Sosa, Rui P P L Ribeiro, Srdana Kolakovic, Inês Matos, Maria Bernardo, José P B Mota, João M M Araújo, Ana B Pereiro
{"title":"Solid Porous Materials for Selective Capture and Separation of Sulfur Hexafluoride (SF<sub>6</sub>).","authors":"Julio E Sosa, Rui P P L Ribeiro, Srdana Kolakovic, Inês Matos, Maria Bernardo, José P B Mota, João M M Araújo, Ana B Pereiro","doi":"10.1002/cplu.202500376","DOIUrl":"https://doi.org/10.1002/cplu.202500376","url":null,"abstract":"<p><p>Developing technologies to capture, purify, and reuse potent greenhouse gases such as sulfur hexafluoride (SF<sub>6</sub>) is crucial because of their high global warming potential. Porous solid matrices are promising candidates for this purpose, due to their high surface areas and pore volumes. Herein, two coconut shell-derived activated carbons (AC) (CS-CO<sub>2</sub> and CS-ZnCl<sub>2</sub>), obtained through physical and chemical activation, are evaluated and compared with two commercial adsorbents: an AC monolith (ACM) and a metal-organic framework. The adsorption capacities for SF<sub>6</sub> and nitrogen (N<sub>2</sub>) are measured gravimetrically at three temperatures: 283.15, 303.15, and 323.15 K. The experimental data are fitted using the Toth model, and the impact of temperature and pressure on the adsorption performance is analyzed. The order of SF<sub>6</sub> adsorption capacity is: ACM > CS-ZnCl<sub>2</sub> > Fe-BTC > CS-CO<sub>2</sub>, reflecting dependence on surface area. Selectivity for SF<sub>6</sub>/N<sub>2</sub> separation is evaluated using Ideal Adsorbed Solution Theory, with ACM exhibiting the highest adsorption capacity due to its selective separation properties. These findings contribute to the understanding and selection of efficient adsorbent materials for SF<sub>6</sub> separation and recovery, providing valuable insights for their future implementation in industrial gas treatment and environmental management applications.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202500376"},"PeriodicalIF":2.8,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145249067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current Opinion in Supramolecular Assemblies via Cyclodextrin-Based Host-Guest Interactions: Concepts and Applications. 基于环糊精的主-客体相互作用的超分子组装:概念和应用。
IF 2.8 4区 化学
ChemPlusChem Pub Date : 2025-10-08 DOI: 10.1002/cplu.202500384
Chunxi Hou, Shicong Liu, Yuanyuan Zhang, Dan Jia, Junqiu Liu
{"title":"Current Opinion in Supramolecular Assemblies via Cyclodextrin-Based Host-Guest Interactions: Concepts and Applications.","authors":"Chunxi Hou, Shicong Liu, Yuanyuan Zhang, Dan Jia, Junqiu Liu","doi":"10.1002/cplu.202500384","DOIUrl":"https://doi.org/10.1002/cplu.202500384","url":null,"abstract":"<p><p>Cyclodextrin is a typical macrocyclic molecule that can recognize and bind numerous guest molecules with specific structure and functional groups. The cyclodextrin-based supramolecular nanostructures, characterized by well-defined, ordered, compact, and regular molecular arrangements, are widely utilized in drug delivery, sensing, and light-harvesting systems. Their unique physicochemical properties have further expanded the scope of research in both biophysics and chemistry. In this review, we provide an overview of the concepts and applications of cyclodextrin-based supramolecular nanostructures, with a focus on their relevance to biochemistry and chemistry.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202500384"},"PeriodicalIF":2.8,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145249007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acetylacetonate Derived Cobalt(III) Complexes as Photocatalysts and Electrocatalysts for Energy Conversion. 乙酰丙酮酸衍生钴(III)配合物作为光催化剂和电催化剂的能量转换。
IF 2.8 4区 化学
ChemPlusChem Pub Date : 2025-10-06 DOI: 10.1002/cplu.202500305
Thamilarasan Vijayan, Abida Batool, Yu Mi Park, Jinheung Kim, Rodrigo Arancibia, Nallathambi Sengottuvelan
{"title":"Acetylacetonate Derived Cobalt(III) Complexes as Photocatalysts and Electrocatalysts for Energy Conversion.","authors":"Thamilarasan Vijayan, Abida Batool, Yu Mi Park, Jinheung Kim, Rodrigo Arancibia, Nallathambi Sengottuvelan","doi":"10.1002/cplu.202500305","DOIUrl":"https://doi.org/10.1002/cplu.202500305","url":null,"abstract":"<p><p>Developing systems that facilitate the conversion of solar energy into fuel by reducing carbon dioxide and producing hydrogen could bridge the gap between production and consumption. In this work, a new method to study the reaction intermediates of carbon dioxide reduction reaction (CO<sub>2</sub>RR) and hydrogen elimination reaction (HER) catalyzed by Cobalt(III) catalysts with high photocatalytic activity in a water/acetonitrile solvent system is proposed. The optimization of the cobalt catalysts ([Co(acac)(bpy)(N<sub>3</sub>)<sub>2</sub>].H<sub>2</sub>O 1, [Co(acac)(en)(N<sub>3</sub>)<sub>2</sub>] 2 and [Co(acac)(2-pic)(N<sub>3</sub>)<sub>2</sub>] 3) for photocatalytic activities in visible light irradiation (>420 nm) is performed by varying solvents systems (v/v) (CH<sub>3</sub>COCH<sub>3</sub>/H<sub>2</sub>O, CH<sub>3</sub>CN/H<sub>2</sub>O, DMF/H<sub>2</sub>O, EtOH/H<sub>2</sub>O and H<sub>2</sub>O), sacrificial electron donors (1-benzyl-1,4-dihydronicotinamide (BNAH), diethanolamine (DEOA), triethylamine (TEA), and triethanolamine (TEOA), photosensitizers (Eosin Y, Erythrosin B, Fluorescein (Fl), Rose Bengal, Rhodamine-B, and Ru(bpy)<sub>3</sub> (Ru)), pH (7-12.5) and different catalyst concentrations (0-2 mM). The arrangement around the Cobalt(III) ion is an octahedral coordination geometry. A combination of experimental characterization and density functional theory (DFT) is used to identify the mechanism of the photocatalytic CO<sub>2</sub> reduction reaction. DFT calculations and experimental results for the photocatalytic activity of the catalysts 1-3 reveal the involvement of multi-electron metal-ligand exchange coupling in promoting CO<sub>2</sub>RR and HER, and provide a starting point for the integration of these strategies into catalyst design.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202500305"},"PeriodicalIF":2.8,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145230953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyanines Substituted on the Polymethine Chain: Synthesis, Resulting Properties, and Application Use Cases. 聚甲基链上取代的菁氨酸:合成、产生的性质和应用用例。
IF 2.8 4区 化学
ChemPlusChem Pub Date : 2025-10-03 DOI: 10.1002/cplu.202500279
Rebecca Strada, David Dunlop, Peter Šebej
{"title":"Cyanines Substituted on the Polymethine Chain: Synthesis, Resulting Properties, and Application Use Cases.","authors":"Rebecca Strada, David Dunlop, Peter Šebej","doi":"10.1002/cplu.202500279","DOIUrl":"https://doi.org/10.1002/cplu.202500279","url":null,"abstract":"<p><p>Cyanines comprise a diverse group of small-molecule polymethine dyes combining tunable optical properties with high molar absorptivity and fluorescence emission quantum yield, enabling various applications in bioimaging, diagnostics, molecular electronics, photonics, and nonlinear optics. These applications can be facilitated by adjusting the length of their polymethine chain and their functionalization through their end groups or the polymethine chain. Yet, the latter approach remains largely unexplored, with limited information scattered throughout literature. This review focuses on cyanines substituted on their chain, covering their synthesis, properties, and applications and providing an overview of how substituents on their polymethine chain influences their spectroscopic properties, akin to other factors, such as polymethine length and end groups. Lastly, this review illustrates how substituents on the polymethine chain facilitate the application of cyanine dyes in promising research areas.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202500279"},"PeriodicalIF":2.8,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145211244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chain-Length-Dependent Phase Behavior and Photoluminescence in Imidazole-Substituted Fluorinated Tolane Liquid Crystals. 咪唑取代氟化甲苯液晶的链长依赖性相行为和光致发光。
IF 2.8 4区 化学
ChemPlusChem Pub Date : 2025-10-03 DOI: 10.1002/cplu.202500438
Yuto Eguchi, Tadahiro Hirami, Masato Morita, Motohiro Yasui, Tsutomu Konno, Shigeyuki Yamada
{"title":"Chain-Length-Dependent Phase Behavior and Photoluminescence in Imidazole-Substituted Fluorinated Tolane Liquid Crystals.","authors":"Yuto Eguchi, Tadahiro Hirami, Masato Morita, Motohiro Yasui, Tsutomu Konno, Shigeyuki Yamada","doi":"10.1002/cplu.202500438","DOIUrl":"https://doi.org/10.1002/cplu.202500438","url":null,"abstract":"<p><p>Multifunctional materials that exhibit both photoluminescence (PL) and liquid-crystalline (LC) properties, referred to as photoluminescent liquid crystals (PLLCs), have garnered considerable interest for applications in fluorescent thermometers and thermosensors. This interest is attributable to their reversible fluorescence switching behavior, driven by aggregated structural changes associated with phase transitions upon heating and cooling. The research group has developed various PLLCs by incorporating fluorescent π-conjugated mesogens into donor-π-acceptor (D-π-A)-type fluorinated tolanes, functionalized with a range of electron-donating and electron-withdrawing groups (EWGs) at the molecular terminal positions. This article introduces a novel class of D-π-A-type fluorinated tolanes featuring an imidazole ring, which functions as an EWG with both steric and electronic effects. These compounds exhibit distinct phase transition behaviors and photophysical properties depending on the chain length of the flexible alkoxy units. Furthermore, for compounds exhibiting any LC phase, the PL behavior in the mesophase is evaluated. The results reveal that phase transitions lead to changes in both the fluorescence wavelength and intensity. These findings demonstrate that nitrogen-containing heterocycles, such as imidazole, are effective EWG units with both steric and electronic contributions. As such, they hold promise for the design of PLLCs for use in PL sensing materials.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202500438"},"PeriodicalIF":2.8,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145224725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydroxyapatite-Supported Ruthenium Catalysts in Ammonia Synthesis: Impact of Ba and Cs as Catalyst Promoters. 羟基磷灰石负载钌催化剂在氨合成中的作用:Ba和Cs作为催化剂促进剂的影响。
IF 2.8 4区 化学
ChemPlusChem Pub Date : 2025-09-26 DOI: 10.1002/cplu.202500428
Héctor Uriel Rodríguez Vera, Christophe Coquelet, Thomas Deleau, Armando Izquierdo Colorado, Olivier Bouchard, Doan Pham Minh
{"title":"Hydroxyapatite-Supported Ruthenium Catalysts in Ammonia Synthesis: Impact of Ba and Cs as Catalyst Promoters.","authors":"Héctor Uriel Rodríguez Vera, Christophe Coquelet, Thomas Deleau, Armando Izquierdo Colorado, Olivier Bouchard, Doan Pham Minh","doi":"10.1002/cplu.202500428","DOIUrl":"https://doi.org/10.1002/cplu.202500428","url":null,"abstract":"<p><p>This work is devoted to the synthesis, the characterization, and the evaluation of hydroxyapatite-supported ruthenium catalysts, with or without Ba and/or Cs promotion. Thus, a series of catalysts containing Ru, Cs, and Ba was synthesized by the incipient wetness impregnation method. Such catalysts are characterized by different physicochemical methods, providing insights into their properties. These catalysts are evaluated in the ammonia synthesis reaction at 350-500 °C and 10-25 bar. Sample 1Ru/hydroxiapatite (HAP), without promoter, shows a negligible catalytic activity, due to the formation of large Ru nanoparticles, which are not favorable for the formation of ammonia. On the other hand, the addition of Cs and Ba improves the catalytic performance, and Ba is found to be better than Cs. The pretreatment of the barium-containing catalysts under Ar flow at 600 °C is also found to be crucial for the decomposition of barium nitrate into barium oxide, thereby enhancing catalytic activity.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e70054"},"PeriodicalIF":2.8,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145147098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-Doped Perylene and Naphthalene Diimide Materials for Organic Electronics. 有机电子用自掺杂苝和萘二亚胺材料。
IF 2.8 4区 化学
ChemPlusChem Pub Date : 2025-09-24 DOI: 10.1002/cplu.202500301
Pinyu Chen, Jiulong Zhang, Chengshan Yuan, Xiangfeng Shao, Hao-Li Zhang, Zitong Liu
{"title":"Self-Doped Perylene and Naphthalene Diimide Materials for Organic Electronics.","authors":"Pinyu Chen, Jiulong Zhang, Chengshan Yuan, Xiangfeng Shao, Hao-Li Zhang, Zitong Liu","doi":"10.1002/cplu.202500301","DOIUrl":"https://doi.org/10.1002/cplu.202500301","url":null,"abstract":"<p><p>Self-doping has emerged as an effective strategy to tailor the electronic properties of organic materials, especially for n-type semiconductors based on perylene diimide (PDI) and naphthalene diimide (NDI). This review summarizes recent progress in the molecular design and application of self-doped PDI/NDI systems. Representative self-doping groups such as amines, ammonium salts, and other anionic species are introduced and classified. The effects of doping group connecting site selection, including the imide position, aromatic core, and side substitutes, on molecular and electronic properties are then discussed. The application of self-doped PDI/NDI materials in organic electronic devices is also highlighted, covering thin-film solar cells, organic field-effect transistors, and organic thermoelectrics. These materials have shown the ability to improve charge injection, enhance device stability, and regulate interfacial processes. Overall, self-doping is a promising strategy for developing high-performance n-type organic semiconductors. With ongoing improvements in molecular design and device engineering, self-doped PDI/NDI materials are expected to contribute significantly to the advancement of next-generation electronic materials and devices.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202500301"},"PeriodicalIF":2.8,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145129753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信