CeO2/SBA-15对CO2的增强吸附:氧空位的关键作用

IF 2.8 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Danilo W Losito, Jessica A F Pedro, Luís C Cides-da-Silva, Matheus C R Miranda, Animesh Dutta, Rafael M Santos, Tereza S Martins
{"title":"CeO2/SBA-15对CO2的增强吸附:氧空位的关键作用","authors":"Danilo W Losito, Jessica A F Pedro, Luís C Cides-da-Silva, Matheus C R Miranda, Animesh Dutta, Rafael M Santos, Tereza S Martins","doi":"10.1002/cplu.202500288","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the role of oxygen vacancies in the CO<sub>2</sub> adsorption and desorption dynamics of SBA-15:CeO<sub>2</sub> nanocomposites synthesized by direct (DS) and postsynthesis (PS) methods. Physicochemical analyses reveal that the DS method increases the concentration of oxygen vacancies and structural defects within the CeO<sub>2</sub> framework, which significantly boosts CO<sub>2</sub> adsorption capacity and strengthens the gas-surface interactions. Among the materials, S_Ce4.a demonstrates the highest adsorption capacity, reaching 29.4 mg g<sup>-</sup> <sup>1</sup> at 25 °C and 10.7 mg g<sup>-1</sup> at 70 °C. These results indicate a physisorption mechanism governed by both thermal conditions and oxygen vacancies. Furthermore, S_Ce4.a and S_Ce10.a. exhibit remarkable stability over 20 adsorption-desorption cycles. The findings suggest that a lower cerium oxide content provides more accessible adsorption sites, making these materials promising candidates for high-performance. Overall, this work highlights synergistic interplay between oxygen vacancies and mesoporous structures, paving the way for the rational design of advanced materials for CO<sub>2</sub> capture technologies.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e2500288"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced CO<sub>2</sub> Adsorption on CeO<sub>2</sub>/SBA-15: The Key Role of Oxygen Vacancies.\",\"authors\":\"Danilo W Losito, Jessica A F Pedro, Luís C Cides-da-Silva, Matheus C R Miranda, Animesh Dutta, Rafael M Santos, Tereza S Martins\",\"doi\":\"10.1002/cplu.202500288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates the role of oxygen vacancies in the CO<sub>2</sub> adsorption and desorption dynamics of SBA-15:CeO<sub>2</sub> nanocomposites synthesized by direct (DS) and postsynthesis (PS) methods. Physicochemical analyses reveal that the DS method increases the concentration of oxygen vacancies and structural defects within the CeO<sub>2</sub> framework, which significantly boosts CO<sub>2</sub> adsorption capacity and strengthens the gas-surface interactions. Among the materials, S_Ce4.a demonstrates the highest adsorption capacity, reaching 29.4 mg g<sup>-</sup> <sup>1</sup> at 25 °C and 10.7 mg g<sup>-1</sup> at 70 °C. These results indicate a physisorption mechanism governed by both thermal conditions and oxygen vacancies. Furthermore, S_Ce4.a and S_Ce10.a. exhibit remarkable stability over 20 adsorption-desorption cycles. The findings suggest that a lower cerium oxide content provides more accessible adsorption sites, making these materials promising candidates for high-performance. Overall, this work highlights synergistic interplay between oxygen vacancies and mesoporous structures, paving the way for the rational design of advanced materials for CO<sub>2</sub> capture technologies.</p>\",\"PeriodicalId\":148,\"journal\":{\"name\":\"ChemPlusChem\",\"volume\":\" \",\"pages\":\"e2500288\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPlusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cplu.202500288\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cplu.202500288","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了氧空位在直接(DS)和后合成(PS)制备的SBA-15:CeO2纳米复合材料的CO2吸附和解吸动力学中的作用。理化分析表明,DS方法增加了CeO2框架内氧空位和结构缺陷的浓度,显著提高了CO2吸附能力,增强了气-表面相互作用。其中,S_Ce4。a表现出最高的吸附量,在25°C和70°C下分别达到29.4 mg g-1和10.7 mg g-1。这些结果表明了一个由热条件和氧空位共同控制的物理吸附机制。此外,S_Ce4。a和S_Ce10.a。在20次吸附-解吸循环中表现出显著的稳定性。研究结果表明,较低的氧化铈含量提供了更容易获得的吸附位点,使这些材料成为高性能的有希望的候选者。总的来说,这项工作强调了氧空位和介孔结构之间的协同相互作用,为合理设计用于二氧化碳捕获技术的先进材料铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced CO2 Adsorption on CeO2/SBA-15: The Key Role of Oxygen Vacancies.

This study investigates the role of oxygen vacancies in the CO2 adsorption and desorption dynamics of SBA-15:CeO2 nanocomposites synthesized by direct (DS) and postsynthesis (PS) methods. Physicochemical analyses reveal that the DS method increases the concentration of oxygen vacancies and structural defects within the CeO2 framework, which significantly boosts CO2 adsorption capacity and strengthens the gas-surface interactions. Among the materials, S_Ce4.a demonstrates the highest adsorption capacity, reaching 29.4 mg g- 1 at 25 °C and 10.7 mg g-1 at 70 °C. These results indicate a physisorption mechanism governed by both thermal conditions and oxygen vacancies. Furthermore, S_Ce4.a and S_Ce10.a. exhibit remarkable stability over 20 adsorption-desorption cycles. The findings suggest that a lower cerium oxide content provides more accessible adsorption sites, making these materials promising candidates for high-performance. Overall, this work highlights synergistic interplay between oxygen vacancies and mesoporous structures, paving the way for the rational design of advanced materials for CO2 capture technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemPlusChem
ChemPlusChem CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
5.90
自引率
0.00%
发文量
200
审稿时长
1 months
期刊介绍: ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信