{"title":"Dexmedetomidine protects against sepsis-induced lung injury through autophagy and Smad2/3 signaling pathway.","authors":"Zhanli Liu, Jiqing Xu, Yanqiu Zhao, Yanbin Wan, Rui Guo, Canling Long, Jia Liu, Xinhuang Yao, Wenchao Yin","doi":"10.22038/IJBMS.2023.73479.15964","DOIUrl":"10.22038/IJBMS.2023.73479.15964","url":null,"abstract":"<p><strong>Objectives: </strong>Dexmedetomidine (Dex) is a potent α2-adrenergic receptor(α2-AR) agonist that has been shown to protect against sepsis-induced lung injury, however, the underlying mechanisms of this protection are not fully understood. Autophagy and the Smad2/3 signaling pathway play important roles in sepsis-induced lung injury, but the relationship between Dex and Smad2/3 is not clear. This study aimed to investigate the role of autophagy and the Smad2/3 signaling pathway in Dex-mediated treatment of sepsis-induced lung injury. Sepsis was performed using cecal ligation and puncture (CLP) in C57BL/6J mice.</p><p><strong>Materials and methods: </strong>Mice were randomly assigned to four groups (n=6 per group): sham, CLP, CLP-Dex, and CLP-Dex-YOH, Yohimbine hydrochloride (YOH) is an α2-AR blocker. The cecum was carefully separated to avoid blood vessel damage and was identified and punctured twice with an 18-gauge needle. The pathological changes, inflammatory factor levels, oxidative stress, autophagy, Smad2/3 signaling pathway-related protein levels in lung tissues, and the activity of superoxide dismutase (SOD) and malonaldehyde (MDA) in the serum were measured.</p><p><strong>Results: </strong>CLP-induced lung injury was reflected by increased levels of inflammatory cytokines, apoptosis, and oxidative stress, along with an increase in the expression of autophagy and Smad2/3 signaling pathway-related proteins. Dex could reverse these changes and confer a protective effect on the lung during sepsis. However, the administration of YOH significantly reduced the positive effects of Dex in mice with sepsis.</p><p><strong>Conclusion: </strong>Dex exerts its beneficial effects against sepsis-induced lung injury through the regulation of autophagy and the Smad2/3 signaling pathway.</p>","PeriodicalId":14495,"journal":{"name":"Iranian Journal of Basic Medical Sciences","volume":"27 4","pages":"453-460"},"PeriodicalIF":2.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10897556/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139990052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fatemeh Salami, Reza Mohebbati, Sara Hosseinian, Samira Shahraki, Hossein Hossienzadeh, Abolfazl Khajavi Rad
{"title":"Propolis and its therapeutic effects on renal diseases: A review.","authors":"Fatemeh Salami, Reza Mohebbati, Sara Hosseinian, Samira Shahraki, Hossein Hossienzadeh, Abolfazl Khajavi Rad","doi":"10.22038/IJBMS.2024.73081.15880","DOIUrl":"10.22038/IJBMS.2024.73081.15880","url":null,"abstract":"<p><p>Propolis is produced by bees using a mixture of bees wax and saliva. It contains several bioactive compounds that mainly induce anti-oxidant and anti-inflammatory effects. In this review, we aimed to investigate the effects of propolis on kidney diseases. We used \"Kidney\", \"Disease\", \"Propolis\", \"Renal\", \"Constituent\", \"Mechanism\", \"Infection\", and other related keywords as the main keywords to search for works published before July 2023 in Google scholar, Scopus, and Pubmed databases. The search terms were selected according to Medical Subject Headings (MeSH). This review showed that propolis affects renal disorders with inflammatory and oxidative etiology due to its bioactive compounds, mainly flavonoids and polyphenols. There have been few studies on the effects of propolis on kidney diseases; nevertheless, the available studies are integrated in this review. Overall, propolis appears to be effective against several renal diseases through influencing mechanisms such as apoptosis, oxidative balance, and inflammation.</p>","PeriodicalId":14495,"journal":{"name":"Iranian Journal of Basic Medical Sciences","volume":"27 4","pages":"383-390"},"PeriodicalIF":2.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10897566/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139990058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Andrographolide demonstrates anti-proliferative activity in oral cancer by promoting apoptosis, the programmed cell death process.","authors":"Gauri Mansinh Kumbhar, Amol Dilip Jadhav, Supriya Kheur, Ladke Vaibhav Sunil","doi":"10.22038/ijbms.2024.76691.16599","DOIUrl":"10.22038/ijbms.2024.76691.16599","url":null,"abstract":"<p><strong>Objectives: </strong>Andrographolide has been studied on different types of human cancer cells, but very few studies have been conducted on oral cancer. The study aimed to evaluate the anticancer potential of Andrographolide on an oral cancer cell line (KB) through <i>in-silico</i> network analysis and <i>in vitro</i> assays.</p><p><strong>Materials and methods: </strong>The <i>in-silico</i> analysis involved the determination of drug-likeness prediction, prediction of common targets between oral cancer and andrographolide, Protein-Protein Interactions (PPI), hub genes, top 10 associated pathways by Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway, gene ontology (GO), and molecular docking experiments. <i>In vitro</i> assays comprised MTT assay, apoptosis assay, cell cycle analysis, intracellular reactive oxygen species (ROS) measurement, mitochondrial membrane potential (MMP), anti-migration activity, and gene expressions using polymerase chain reaction (PCR).</p><p><strong>Results: </strong>Fifteen common genes were obtained and were seen to be involved in cellular proliferation, regulation of apoptosis, migration of cells, regulation of MAPK cascade, and regulation of cell cycle. The most common genes involved in the top 10 pathways were MAPK1, MAPK8, MAPK14, and IL6 which were seen to be associated with the MAPK signaling pathway which may be the key pathway through which andrographolide may aid in treating oral cancer. <i>In vitro</i> assays showed anti-proliferative properties, late apoptosis, and anti-migratory properties.</p><p><strong>Conclusion: </strong>According to the results obtained, andrographolide has shown anticancer properties and has the potential to be used as a chemotherapeutic drug. The <i>in-silico</i> approach used in the present study can aid as a model for future research in developing efficient cancer treatments.</p>","PeriodicalId":14495,"journal":{"name":"Iranian Journal of Basic Medical Sciences","volume":"27 10","pages":"1300-1308"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366947/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142125694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MicroRNA miR-188-5p enhances SUMO2/3 conjugation by targeting SENP3 and alleviates focal cerebral ischemia/reperfusion injury in rats.","authors":"","doi":"10.22038/ijbms.2024.76165.16485","DOIUrl":"10.22038/ijbms.2024.76165.16485","url":null,"abstract":"<p><strong>Objectives: </strong>Expression of miR-188-5p changes upon experiencing cerebral I/R injury. SENP3 is a predicted target of miR-188-5p. The study aimed to examine the potential mechanism underlying the miR-188-5p mediated enhancement of SUMO2/3 conjugation via targeting SENP3 and alleviation against cerebral I/R injury.</p><p><strong>Materials and methods: </strong>Focal cerebral I/R was established in Sprague-Dawley rats using the MCAO model. The expression of miR-188-5p was modulated through intracerebroventricular (ICV) administration of its mimics or inhibitors. The expression of miR-188-5p, SENP3, and SUMO2/3 was detected using RT-qPCR or western blot analysis. Dual luciferase reporter assays were conducted to demonstrate the targeting effect of miR-188-5p on SENP3 in N2a cells. HE staining and TUNEL staining were performed to evaluate neurocellular morphological changes and detect neurocellular apoptosis, respectively. The extent of neurological deficits was evaluated using mNSS. TTC staining was used to evaluate the infarct area.</p><p><strong>Results: </strong>In the cerebral ischemic penumbra, the expression of miR-188-5p declined and SENP3 levels increased following I/R. Dual luciferase reporter assays confirmed that miR-188-5p directly acted on SENP3 in N2a cells. As a self-protective mechanism, SUMO2/3 conjugation increased after reperfusion. After ICV administration of miR-188-5p inhibitor, the expression of miR-188-5p was down-regulated, the expression of SENP3 was up-regulated, the SUMO2/3 conjugation decreased, and cerebral I/R injury was exacerbated. However, ICV administration of small hairpin RNA targeting SENP3 partially reversed the effects of the miR-188-5p inhibitor.</p><p><strong>Conclusion: </strong>MiR-188-5p mitigated cerebral I/R injury by down-regulating SENP3 expression and consequently enhancing SUMO2/3 conjugation in rats.</p>","PeriodicalId":14495,"journal":{"name":"Iranian Journal of Basic Medical Sciences","volume":"27 10","pages":"1260-1267"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366937/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142125703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Antiarrhythmic potentials of irisin in ischemia/reperfusion injury of diabetic rats through modulating mitochondria-endoplasmic reticulum interaction and inhibiting pyroptosis.","authors":"Xiaona Zhang Zhang, Kai Jing, Wei Ma, Jin Wang","doi":"10.22038/ijbms.2024.78069.16878","DOIUrl":"10.22038/ijbms.2024.78069.16878","url":null,"abstract":"<p><strong>Objectives: </strong>Myocardial arrhythmia is a major complication of ischemia-reperfusion (I/R) injury in patients with diabetes. Irisin has significant cardioprotective effects, while its role in the pathophysiology of I/R injury-induced myocardial arrhythmia in the presence of diabetes is not well identified. Here, we aimed to investigate the potential antiarrhythmic impacts and mechanisms (mitochondrial biogenesis, endoplasmic reticulum (ER) stress, and pyroptosis) by which irisin reduces I/R injury-induced myocardial arrhythmia in diabetic rats.</p><p><strong>Materials and methods: </strong>Thirty high-fat diet-induced diabetic rats were subjected to I/R injury and myocardial arrhythmia. Irisin (0.5 μg/kg/day) was injected intraperitoneally before induction of I/R injury. Electrocardiography was used to measure the incidence and severity of ventricular arrhythmias. ELISA and western blotting analyses were employed to quantify the expression of mitochondrial biogenesis, ER stress, and pyroptosis-related proteins in ischemic myocardium.</p><p><strong>Results: </strong>Irisin treatment in diabetic rats significantly decreased the lactate dehydrogenase level and the number and severity of arrhythmia induced by I/R injury. Irisin up-regulated the expression of mitochondrial biogenesis-related proteins while down-regulating the expression of ER stress and pyroptosis-related proteins. Furthermore, the inhibition of mitochondrial quality control by mdivi-1 significantly abolished the cardioprotective effect of irisin.</p><p><strong>Conclusion: </strong>Our findings suggest that irisin reduced myocardial arrhythmia induced by I/R injury in diabetic rats by modulating the interaction of mitochondrial biogenesis and ER stress proteins and inhibiting the pyroptosis pathway. These findings provide a promising strategy for managing myocardial arrhythmia in diabetic patients, but supplementary studies are needed to confirm the clinical efficacy of irisin in these patients.</p>","PeriodicalId":14495,"journal":{"name":"Iranian Journal of Basic Medical Sciences","volume":"27 11","pages":"1440-1446"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459340/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"C-71980262, a novel small molecule against human papilloma virus-16 E6 (HPV-16 E6) with anticancer potency against cervical cancer: A computational guided <i>in vitro</i> approach.","authors":"Ashish Kumar","doi":"10.22038/ijbms.2024.78090.16882","DOIUrl":"10.22038/ijbms.2024.78090.16882","url":null,"abstract":"<p><strong>Objectives: </strong>Human papillomavirus-16 E6 (HPV-16 E6) forms a heterodimer complex to up-regulate the degradation of tumor suppressor protein p53 to promote cervical cancer. This study aims to identify a novel small molecule against E6 with anticancer efficacy against HPV-16, a prime high-risk serotype inducer for cervical cancer.</p><p><strong>Materials and methods: </strong>Autodock-vina-based high-throughput virtual screening and atomistic molecular dynamic simulations were used for identification of targeted lead molecules. HPV-16 infected SiHa and CaSki cell lines were used to validate the lead compound in vitro. Proliferation of cancer cells was analyzed by MTT assay and flow cytometry was used to analyze target inhibition, apoptosis, and p53.</p><p><strong>Results: </strong>High throughput virtual screening and molecular dynamic simulation identified C-71980262 as a lead candidate that could bind HPV-E6. Atomistic molecular dynamic simulation of E6 bound C-71980262 for 200 ns showed that the predicted ligand binding was stable with minimal energy expenditure, proposing the viability and veracity of the assessed molecule. C-71980262 inhibited the proliferation of SiHa and CaSki cells with GI50 values of 355.70 nM and 505.90 nM, respectively. The compound reduced HPV-16 E6 while inducing early and late-phase apoptosis in these cells. Treatment with C-71980262 increased the p53-positive populations in SiHa and CaSki cells.</p><p><strong>Conclusion: </strong>C-71980262 was identified as a novel lead molecule that could inhibit the HPV-16 E6 and increase p53 in cervical cancer cells. Further in vitro and in vivo validation is warranted to consolidate and corroborate this lead compound against HPV-induced cancer progression.</p>","PeriodicalId":14495,"journal":{"name":"Iranian Journal of Basic Medical Sciences","volume":"27 11","pages":"1389-1396"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459339/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Introduction of <i>LPIN1</i> as a potential diagnostic and prognostic biomarker for gastric cancer via integrative bioinformatics analysis of a competing endogenous RNA network and experimental validation.","authors":"Milad Daneshmand-Parsa, Parvaneh Nikpour","doi":"10.22038/ijbms.2024.74686.16216","DOIUrl":"10.22038/ijbms.2024.74686.16216","url":null,"abstract":"<p><strong>Objectives: </strong>Identification of effective biomarkers is crucial for the heterogeneous disease of gastric cancer (GC). Recent studies have focused on the role of pseudogenes regulating gene expression through competing endogenous RNA (ceRNA) networks, however, the pseudogene-associated ceRNA networks in GC remain largely unknown. The current study aimed to construct and analyze a three-component ceRNA network in GC and experimentally validate a ceRNA.</p><p><strong>Materials and methods: </strong>A comprehensive analysis was conducted on the RNA-seq and miRNA-seq data of The Cancer Genome Atlas (TCGA) stomach adenocarcinoma (STAD) dataset to identify differentially-expressed mRNAs (DEMs), pseudogenes (DEPs), and miRNAs (DEMis). Pseudogene-associated ceRNA and protein-protein interaction (PPI) networks were constructed, and functional enrichment analyses were performed. DEMs and DEPs with degree centralities≥2 were selected for survival analysis. A ceRNA was further selected for experimental validation.</p><p><strong>Results: </strong>10,145 DEMs, 3576 DEPs, and 66 DEMis were retrieved and a ceRNA network was then constructed by including DEMis with concurrent interactions with at least a DEM and a DEP. Functional enrichment analysis demonstrated that DEMs of the ceRNA network were significantly enriched in cancer-associated pathways. <i>LPIN1</i> and <i>WBP1L</i> were two mRNAs showing an association with STAD patients overall survival. Expression analysis of <i>LPIN1</i> showed a significant decrease in GC tumors compared to non-tumor tissues (<i>P</i>=0.003).</p><p><strong>Conclusion: </strong>Our research emphasizes the significant implications of ceRNA networks in the development of new biomarkers for the detection and prognosis of cancer. Further examination is necessary to explore the functional roles of <i>LPIN1</i> in the pathogenesis of GC.</p>","PeriodicalId":14495,"journal":{"name":"Iranian Journal of Basic Medical Sciences","volume":"27 11","pages":"1456-1463"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459342/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metformin improves memory via AMPK/mTOR-dependent route in a rat model of Alzheimer's disease.","authors":"Reza Ale Mahmoud Mehraban, Parvin Babaei, Kambiz Rohampour, Adele Jafari, Zoleikha Golipoor","doi":"10.22038/IJBMS.2023.73075.15879","DOIUrl":"10.22038/IJBMS.2023.73075.15879","url":null,"abstract":"<p><strong>Objectives: </strong>Metformin, as an insulin sensitizer, is a familiar antidiabetic drug. Increasing evidence points to metformin's protective effects against Alzheimer's disease (AD). However, the mechanism is not well understood. The present study evaluated whether inhibiting AMPK and activating mTOR could stop metformin from improving memory in rats with streptozotocin (STZ) -induced Alzheimer's disease.</p><p><strong>Materials and methods: </strong>Twelve-week-old Wistar rats, were injected 3 mg/kg STZ intracerebroventricularly on days 1 and 3 to develop the animal model. Metformin was applied orally at 100 mg/kg (17 days). Forty-five min before the retrieval phase, dorsomorphin (DM; AMPK inhibitor, 2 M) and MHY (mTOR activator, 0.1 M) were administered. Morris Water Maze (MWM) and shuttle box were utilized to measure spatial and passive avoidance memory, respectively. Congo red staining was used to identify cortical amyloid deposition.</p><p><strong>Results: </strong>The findings exhibited a considerable enhancement in spatial learning and memory in the metformin treatment group (<i>P</i>≤0.05). Injection of DM and MHY alone could not significantly change MWM and passive avoidance. Additionally, co-administration of DM and MHY increased escape latency (<i>P</i>≤0.001) and reduced the total time spent in the target quadrant (TTS) (<i>P</i>≤0.05) compared to the STZ+MET group during retrieval of MWM. Also, co-injection of DM and MHY increased step-through latency (STL) and decreased time spent in the dark compartment (TDC) compared to the STZ+MET group (<i>P</i>≤0.001).</p><p><strong>Conclusion: </strong>Metformin appears to have a therapeutic impact by activating AMPK and inactivating mTOR. As a result, it could be used as an Alzheimer's treatment strategy.</p>","PeriodicalId":14495,"journal":{"name":"Iranian Journal of Basic Medical Sciences","volume":"27 3","pages":"360-365"},"PeriodicalIF":2.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10849203/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139706741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mingchu Sun, Zihui Zhang, Yue Yin, Lu Yu, Wenhua Jiang, Chan Zhang, Chunhu Gu, Heng Ma, Yishi Wang
{"title":"Melatonin enhanced the cardioprotective effects of HTK solution on Langendorff-perfused mouse hearts subjected to ischemia/reperfusion.","authors":"Mingchu Sun, Zihui Zhang, Yue Yin, Lu Yu, Wenhua Jiang, Chan Zhang, Chunhu Gu, Heng Ma, Yishi Wang","doi":"10.22038/IJBMS.2023.74152.16109","DOIUrl":"10.22038/IJBMS.2023.74152.16109","url":null,"abstract":"<p><strong>Objectives: </strong>Cardiac arrest is a crucial procedure in various cardiac surgeries, during which the heart is subjected to an ischemic state. The occurrence of ischemia/reperfusion (I/R) injury is inevitable due to aortic blockage and opening. The Histidine-tryptophan-ketoglutarate (HTK) solution is commonly used as an organ protection liquid to mitigate cardiac injury during cardiac surgery. Despite its widespread use, there is significant potential for improving its protective efficacy.</p><p><strong>Materials and methods: </strong>The cardioprotective effect of HTK solution with and without melatonin was evaluated using the isolated Langendorff-perfused mouse heart model. The isolated C57bL/6 mouse hearts were randomly divided into four groups: control, I/R, HTK solution treatment before reperfusion (HTK+I/R), and HTK solution combined with melatonin before reperfusion (HTK+M+I/R). Cardiac function and myocardial injury markers were then measured. AMP-activated protein kinase α2 (AMPKα2) KO mice were used to investigate the underlying mechanism.</p><p><strong>Results: </strong>In our study, we found that melatonin significantly improved the protective effects of HTK solution in an isolated Langendorff-perfused mouse model, mechanistically by reducing mitochondrial damage, improving energy metabolism, inhibiting cardiomyocyte apoptosis, and reducing myocardial infarction size. We also observed that the HTK solution alone was ineffective in inhibiting ER stress, but when melatonin was added, there was a significant reduction in ER stress. Furthermore, melatonin was found to alleviate carbonyl stress during cardiac I/R. Interestingly, our results showed that the cardioprotective properties of melatonin were dependent on AMPKα2.</p><p><strong>Conclusion: </strong>The findings presented in this study offer a valuable empirical foundation for the development of perioperative cardioprotective strategies.</p>","PeriodicalId":14495,"journal":{"name":"Iranian Journal of Basic Medical Sciences","volume":"27 3","pages":"366-374"},"PeriodicalIF":2.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10849209/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139706772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fucoidan alleviated autoimmune diabetes in NOD mice by regulating pancreatic autophagy through the AMPK/mTOR1/TFEB pathway.","authors":"Haiqi Gao, Yifan Zhou, Chundong Yu, Guifa Wang, Wenwei Song, Zixu Zhang, Lu Lu, Meilan Xue, Hui Liang","doi":"10.22038/IJBMS.2023.68739.14981","DOIUrl":"10.22038/IJBMS.2023.68739.14981","url":null,"abstract":"<p><strong>Objectives: </strong>The present study investigated the effect and its underlying mechanisms of fucoidan on Type 1 diabetes mellitus (T1DM) in non-obese diabetic (NOD) mice.</p><p><strong>Materials and methods: </strong>Twenty 7-week-old NOD mice were used in this study, and randomly divided into two groups (10 mice in each group): the control group and the fucoidan treatment group (600 mg/kg. body weight). The weight gain, glucose tolerance, and fasting blood glucose level in NOD mice were detected to assess the development of diabetes. The intervention lasted for 5 weeks. The proportions of Th1/Th2 cells from spleen tissues were tested to determine the anti-inflammatory effect of fucoidan. Western blot was performed to investigate the expression levels of apoptotic markers and autophagic markers. Apoptotic cell staining was visualized through TdT-mediated dUTP nick-end labeling (TUNEL).</p><p><strong>Results: </strong>The results suggested that fucoidan ameliorated T1DM, as evidenced by increased body weight and improved glycemic control of NOD mice. Fucoidan down-regulated the Th1/Th2 cells ratio and decreased Th1 type pro-inflammatory cytokines' level. Fucoidan enhanced the mitochondrial autophagy level of pancreatic cells and increased the expressions of Beclin-1 and LC3B II/LC3B I. The expression of p-AMPK was up-regulated and p-mTOR1 was inhibited, which promoted the nucleation of transcription factor EB (TFEB), leading to autophagy. Moreover, fucoidan induced apoptosis of pancreatic tissue cells. The levels of cleaved caspase-9, cleaved caspase-3, and Bax were up-regulated after fucoidan treatment.</p><p><strong>Conclusion: </strong>Fucoidan could maintain pancreatic homeostasis and restore immune disorder through enhancing autophagy via the AMPK/mTOR1/TFEB pathway in pancreatic cells.</p>","PeriodicalId":14495,"journal":{"name":"Iranian Journal of Basic Medical Sciences","volume":"27 1","pages":"31-38"},"PeriodicalIF":2.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10722478/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139074070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}