{"title":"The presynaptic machinery at the synapse of C. elegans.","authors":"Fernando Calahorro, Patricia G Izquierdo","doi":"10.1007/s10158-018-0207-5","DOIUrl":"10.1007/s10158-018-0207-5","url":null,"abstract":"<p><p>Synapses are specialized contact sites that mediate information flow between neurons and their targets. Important physical interactions across the synapse are mediated by synaptic adhesion molecules. These adhesions regulate formation of synapses during development and play a role during mature synaptic function. Importantly, genes regulating synaptogenesis and axon regeneration are conserved across the animal phyla. Genetic screens in the nematode Caenorhabditis elegans have identified a number of molecules required for synapse patterning and assembly. C. elegans is able to survive even with its neuronal function severely compromised. This is in comparison with Drosophila and mice where increased complexity makes them less tolerant to impaired function. Although this fact may reflect differences in the function of the homologous proteins in the synapses between these organisms, the most likely interpretation is that many of these components are equally important, but not absolutely essential, for synaptic transmission to support the relatively undemanding life style of laboratory maintained C. elegans. Here, we review research on the major group of synaptic proteins, involved in the presynaptic machinery in C. elegans, showing a strong conservation between higher organisms and highlight how C. elegans can be used as an informative tool for dissecting synaptic components, based on a simple nervous system organization.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"18 2","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2018-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5851683/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35907304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The allometry of the arcuate body in the postembryonic development of the giant house spider Eratigena atrica.","authors":"Teresa Napiórkowska, Jarosław Kobak","doi":"10.1007/s10158-018-0208-4","DOIUrl":"10.1007/s10158-018-0208-4","url":null,"abstract":"<p><p>The brain of arachnids contains a special neuropil area called the arcuate body (AB), whose function has been widely discussed. Its growth and proportion in the brain volume during postembryogenesis have been investigated only in several spider species. Our allometric study is aimed at determining to what extent the development of the AB in Eratigena atrica, a spider with unique biology and behaviour, is similar to the development of this body in other species. We put forward a hypothesis of allometric growth of this body in relation to the volume of the central nervous system (CNS) and its neuropil as well as in relation to the volume of the brain and its neuropil. The analysis of paraffin embedded, H + E stained histological preparations confirmed our hypothesis. The AB developed more slowly than the CNS and the neuropil of both the brain and the CNS. In contrast, it exhibited positive allometry in relation to the volume of the brain. This body increased more than nine times within the postembryonic development. Its proportion in the brain volume varied; the lowest was recorded in larvae and nymphs I; then, it increased in nymphs VI and decreased to 2.93% in nymphs X. We conclude that in Eratigena atrica, the AB develops differently that in orb-weaver and wandering spiders. There is no universal model of the AB development, although in adult spiders, regardless of their behaviour, the proportion of this area in the brain volume is similar.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"18 2","pages":"3"},"PeriodicalIF":0.0,"publicationDate":"2018-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10158-018-0208-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35901638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrew E Christie, Alexandra Miller, Rebecca Fernandez, Evyn S Dickinson, Audrey Jordan, Jessica Kohn, Mina C Youn, Patsy S Dickinson
{"title":"Non-amidated and amidated members of the C-type allatostatin (AST-C) family are differentially distributed in the stomatogastric nervous system of the American lobster, Homarus americanus.","authors":"Andrew E Christie, Alexandra Miller, Rebecca Fernandez, Evyn S Dickinson, Audrey Jordan, Jessica Kohn, Mina C Youn, Patsy S Dickinson","doi":"10.1007/s10158-018-0206-6","DOIUrl":"10.1007/s10158-018-0206-6","url":null,"abstract":"<p><p>The crustacean stomatogastric nervous system (STNS) is a well-known model for investigating neuropeptidergic control of rhythmic behavior. Among the peptides known to modulate the STNS are the C-type allatostatins (AST-Cs). In the lobster, Homarus americanus, three AST-Cs are known. Two of these, pQIRYHQCYFNPISCF (AST-C I) and GNGDGRLYWRCYFNAVSCF (AST-C III), have non-amidated C-termini, while the third, SYWKQCAFNAVSCFamide (AST-C II), is C-terminally amidated. Here, antibodies were generated against one of the non-amidated peptides (AST-C I) and against the amidated isoform (AST-C II). Specificity tests show that the AST-C I antibody cross-reacts with both AST-C I and AST-C III, but not AST-C II; the AST-C II antibody does not cross-react with either non-amidated peptide. Wholemount immunohistochemistry shows that both subclasses (non-amidated and amidated) of AST-C are distributed throughout the lobster STNS. Specifically, the antibody that cross-reacts with the two non-amidated peptides labels neuropil in the CoGs and the stomatogastric ganglion (STG), axons in the superior esophageal (son) and stomatogastric (stn) nerves, and ~ 14 somata in each commissural ganglion (CoG). The AST-C II-specific antibody labels neuropil in the CoGs, STG and at the junction of the sons and stn, axons in the sons and stn, ~ 42 somata in each CoG, and two somata in the STG. Double immunolabeling shows that, except for one soma in each CoG, the non-amidated and amidated peptides are present in distinct sets of neuronal profiles. The differential distributions of the two AST-C subclasses suggest that the two peptide groups are likely to serve different modulatory roles in the lobster STNS.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"18 1","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2018-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5791145/pdf/nihms935296.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35735814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarah A Abdelmassih, Everett Cochrane, Sean G Forrester
{"title":"Evaluating the longevity of surgically extracted Xenopus laevis oocytes for the study of nematode ligand-gated ion channels.","authors":"Sarah A Abdelmassih, Everett Cochrane, Sean G Forrester","doi":"10.1007/s10158-017-0205-z","DOIUrl":"https://doi.org/10.1007/s10158-017-0205-z","url":null,"abstract":"<p><p>Xenopus laevis oocytes have been extensively used as a heterologous expression system for the study of ion channels. While used successfully worldwide as tool for expressing and characterizing ion channels from a wide range of species, the limited longevity of oocytes once removed from the animal can pose significant challenges. In this study, we evaluate a simple and useful method that extends the longevity of Xenopus oocytes after removal from the animal and quantitatively assessed the reliability of the electrophysiological date obtained. The receptor used for this study was the UNC-49 receptor originally isolated from the sheep parasite, Haemonchus contortus. Overall, we found that immediate storage of the ovary in supplemented ND96 storage buffer at 4 °C could extend their use for up to 17 days with almost 80% providing reliable electrophysiological data. This means that a single extraction can provide at least 3 weeks of experiments. In addition, we examined 24-day-old oocytes (week 4) extracted from a single frog and also obtained reliable data using the same approach. However, 50% of these oocytes were usable for full dose-response experiments. Overall, we did find that this method has the potential to significantly extend the use of single oocyte extractions for two-electrode voltage clamp electrophysiology.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"18 1","pages":"1"},"PeriodicalIF":0.0,"publicationDate":"2017-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10158-017-0205-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35292500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Teresa Napiórkowska, Julita Templin, Katarzyna Wołczuk
{"title":"Morphology and the central nervous system of Eratigena atrica affected by a complex anomaly in the anterior part of the prosoma.","authors":"Teresa Napiórkowska, Julita Templin, Katarzyna Wołczuk","doi":"10.1007/s10158-017-0204-0","DOIUrl":"10.1007/s10158-017-0204-0","url":null,"abstract":"<p><p>Spider embryogenesis is affected by a range of environmental factors. Any sudden, drastic change in the environment may impair spider development, leading to various body deformities. In the present study, we analyze changes in the morphology and structure of the central nervous system of an Eratigena atrica larva, obtained in a teratological experiment in which embryos were exposed to alternating temperatures of 14 and 32 °C for the first 10 days. The studied larva had three pedipalps on the right side of the prosoma (polymely), two of which were fused along their entire length (total heterosymely). In addition, there was a short, club-shaped stump between the pedipalps. Histological analysis confirmed major changes in the structure of the subesophageal ganglion, i.e., the fusion of all three ganglia of pedipalps.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"17 4","pages":"11"},"PeriodicalIF":0.0,"publicationDate":"2017-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5644690/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35519598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paul V Perez, Hanna M Butler-Struben, Robyn J Crook
{"title":"The selective serotonin reuptake inhibitor fluoxetine increases spontaneous afferent firing, but not mechanonociceptive sensitization, in octopus.","authors":"Paul V Perez, Hanna M Butler-Struben, Robyn J Crook","doi":"10.1007/s10158-017-0203-1","DOIUrl":"https://doi.org/10.1007/s10158-017-0203-1","url":null,"abstract":"<p><p>Serotonin is a widely studied modulator of neural plasticity. Here we investigate the effect of fluoxetine, a selective serotonin reuptake inhibitor, on short-term, peripheral nociceptive plasticity in the neurologically complex invertebrate, octopus. After crush injury to isolated mantle (body wall) tissue, application of 10 nM fluoxetine increased spontaneous firing in crushed preparations, but had a minimal effect on mechanosensory sensitization. Effects largely did not persist after washout. We suggest that transiently elevated, endogenous serotonin may help promote initiation of longer-term plasticity of nociceptive afferents and drive immediate and spontaneous behaviors aimed at protecting wounds and escaping dangerous situations.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"17 4","pages":"10"},"PeriodicalIF":0.0,"publicationDate":"2017-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10158-017-0203-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35480826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vanessa M Lopes, Eduardo Sampaio, Katina Roumbedakis, Nobuaki K Tanaka, Lucía Carulla, Guillermo Gambús, Theodosia Woo, Catarina P P Martins, Virginie Penicaud, Colette Gibbings, Jessica Eberle, Perla Tedesco, Isabel Fernández, Tania Rodríguez-González, Pamela Imperadore, Giovanna Ponte, Graziano Fiorito
{"title":"Cephalopod biology and care, a COST FA1301 (CephsInAction) training school: anaesthesia and scientific procedures.","authors":"Vanessa M Lopes, Eduardo Sampaio, Katina Roumbedakis, Nobuaki K Tanaka, Lucía Carulla, Guillermo Gambús, Theodosia Woo, Catarina P P Martins, Virginie Penicaud, Colette Gibbings, Jessica Eberle, Perla Tedesco, Isabel Fernández, Tania Rodríguez-González, Pamela Imperadore, Giovanna Ponte, Graziano Fiorito","doi":"10.1007/s10158-017-0200-4","DOIUrl":"https://doi.org/10.1007/s10158-017-0200-4","url":null,"abstract":"<p><p>Cephalopods are the sole invertebrates included in the list of regulated species following the Directive 2010/63/EU. According to the Directive, achieving competence through adequate training is a requisite for people having a role in the different functions (article 23) as such carrying out procedures on animals, designing procedures and projects, taking care of animals, killing animals. Cephalopod Biology and Care Training Program is specifically designed to comply with the requirements of the \"working document on the development of a common education and training framework to fulfil the requirements under the Directive 2010/63/EU\". The training event occurred at the ICM-CSIC in Barcelona (Spain) where people coming from Europe, America and Asia were instructed on how to cope with regulations for the use of cephalopod molluscs for scientific purposes. The training encompasses discussion on the guidelines for the use and care of animals and their welfare with particular reference to procedures that may be of interest for neuroscience. Intensive discussion has been carried out during the training sessions with focus on behavioural studies and paradigms, welfare assessment, levels of severity of scientific procedures, animal care, handling, transport, individual identification and marking, substance administration, anaesthesia, analgesia and humane killing.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"17 3","pages":"8"},"PeriodicalIF":0.0,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10158-017-0200-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35094242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fast calcium transients translate the distribution and conduction of neural activity in different regions of a single sensory neuron.","authors":"Nuhan Purali","doi":"10.1007/s10158-017-0201-3","DOIUrl":"https://doi.org/10.1007/s10158-017-0201-3","url":null,"abstract":"<p><p>In the present study, cytosolic calcium concentration changes were recorded in response to various forms of excitations, using the fluorescent calcium indicator dye OG-BAPTA1 together with the current or voltage clamp methods in stretch receptor neurons of crayfish. A single action potential evoked a rise in the resting calcium level in the axon and axonal hillock, whereas an impulse train or a large saturating current injection would be required to evoke an equivalent response in the dendrite region. Under voltage clamp conditions, amplitude differences between axon and dendrite responses vanished completely. The fast activation time and the modulation of the response by extracellular calcium concentration changes indicated that the evoked calcium transients might be mediated by calcium entry into the cytosol through a voltage-gated calcium channel. The decay of the responses was slow and sensitive to extracellular sodium and calcium concentrations as well as exposure to 1-10 mM NiCl<sub>2</sub> and 10-500 µM lanthanum. Thus, a sodium calcium exchanger and a calcium ATPase might be responsible for calcium extrusion from the cytosol. Present results indicate that the calcium indicator OG-BAPTA1 might be an efficient but indirect way of monitoring regional membrane potential differences in a single neuron.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"17 3","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10158-017-0201-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35087284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Do terrestrial gastropods use olfactory cues to locate and select food actively?","authors":"Tibor Kiss","doi":"10.1007/s10158-017-0202-2","DOIUrl":"https://doi.org/10.1007/s10158-017-0202-2","url":null,"abstract":"<p><p>Having been investigated for over 40 years, some aspects of the biology of terrestrial gastropod's olfactory system have been challenging and highly contentious, while others still remain unresolved. For example, a number of terrestrial gastropod species can track the odor of food, while others have no strong preferences toward food odor; rather they find it by random encounter. Here, while assessing the most recent findings and comparing them with earlier studies, the aspects of the food selection based on olfactory cues are examined critically to highlight the speculations and controversies that have arisen. We analyzed and compared the potential role of airborne odors in the feeding behavior of several terrestrial gastropod species. The available results indicate that in the foraging of most of the terrestrial gastropod species odor cues contribute substantially to food finding and selection. The results also suggest, however, that what they will actually consume largely depends on where they live and the species of gastropod that they are. Due to the voluminous literature relevant to this object, this review is not intended to be exhaustive. Instead, I selected what I consider to be the most important or critical in studies regarding the role of the olfaction in feeding of terrestrial gastropods.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"17 3","pages":"9"},"PeriodicalIF":0.0,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10158-017-0202-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35151375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marta Sawadro, Agata Bednarek, Agnieszka Babczyńska
{"title":"The current state of knowledge on the neuroactive compounds that affect the development, mating and reproduction of spiders (Araneae) compared to insects.","authors":"Marta Sawadro, Agata Bednarek, Agnieszka Babczyńska","doi":"10.1007/s10158-017-0197-8","DOIUrl":"https://doi.org/10.1007/s10158-017-0197-8","url":null,"abstract":"<p><p>The neuroendocrine system of insects, including the presence of the main neuroactive compounds, and their role in ontogenesis are probably best understood of all the arthropods. Development, metamorphosis, the maturation of the gonads, vitellogenesis and egg production are regulated by hormones (juvenile hormones, ecdysteroids) and neuropeptides. However, knowledge about their presence and functions in spiders is fragmentary. In this paper, we present a summary of the current data about the juvenile hormones, ecdysteroids and neuropeptides in selected groups of arthropods, with particular emphasis on spiders. This is the first article that takes into account the occurrence, action and role of hormones and neuropeptides in spiders. In addition, the suggestions for possible ways to study these compounds in Araneomorphae spiders are unique and cannot be found in the arachnological literature.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"17 2","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10158-017-0197-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34924263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}