International Journal of Solids and Structures最新文献

筛选
英文 中文
Analyzing creep-recovery behavior of tropical Entandrophragma cylindricum wood: Traditional and fractional modeling methods 分析热带 Entandrophragma cylindricum 木材的蠕变恢复行为:传统和分数建模方法
IF 3.4 3区 工程技术
International Journal of Solids and Structures Pub Date : 2024-10-30 DOI: 10.1016/j.ijsolstr.2024.113122
{"title":"Analyzing creep-recovery behavior of tropical Entandrophragma cylindricum wood: Traditional and fractional modeling methods","authors":"","doi":"10.1016/j.ijsolstr.2024.113122","DOIUrl":"10.1016/j.ijsolstr.2024.113122","url":null,"abstract":"<div><div>Nowadays, wood stands as one of the foremost used construction materials, owing largely to its exceptional physical and mechanical properties. Ensuring the safety of timber structures necessitates thorough investigations into the influential phenomena that significantly affect their strength and longevity. The aim of this paper is to study the coupled creep-recovery behavior of tropical wood from the <em>Entandrophragma cylindricum</em> species by evaluating the influence of stress levels on the performance of rheological models. Hence, the Burger and Weibull classic models were introduced to elucidate these phenomena. These models have been compared with the fractional Maxwell and Zener models. Following the simulations, the Burger classic model effectively characterized creep and recovery, comprising elastic, viscoelastic, and viscous elements arranged in series, as well as the classic Weibull model. During the recovery phase, the four-parameter Weibull model demonstrated a satisfying description, achieving 99% accuracy compared to 97% for the four-parameter Burger classic model. Three-parameter fractional Maxwell model fit all phases of the process for all deformations with an average accuracy of 98% for creep and 95% for recovery. These results provide valuable information on the material’s ability to recover from deformation and offer essential insights for materials characterization, engineering design, and quality assurance processes in materials engineering.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced finite element modeling methods for tensile and bending analysis of arresting gear cables 用于拦阻索拉伸和弯曲分析的先进有限元建模方法
IF 3.4 3区 工程技术
International Journal of Solids and Structures Pub Date : 2024-10-29 DOI: 10.1016/j.ijsolstr.2024.113126
{"title":"Advanced finite element modeling methods for tensile and bending analysis of arresting gear cables","authors":"","doi":"10.1016/j.ijsolstr.2024.113126","DOIUrl":"10.1016/j.ijsolstr.2024.113126","url":null,"abstract":"<div><div>This study addresses the gap in understanding the dynamic bending behavior of multi-layer twisted steel cable, pivotal in various industrial applications such as naval aircraft arresting systems. Utilizing advanced finite element modeling, the research explores the mechanical responses of these cables under macroscopic bending scenarios. By integrating beam elements and connectors within the finite element framework, the study simulates complex inter-strand interactions under various loading conditions. Results indicate that this method significantly enhances the prediction accuracy of the cables’ mechanical properties, thus offering substantial improvements in design and performance analysis of arresting gear systems. This study’s value lies in its potential to refine mechanical modeling of complex cable systems, thereby optimizing operational efficiency and safety in engineering applications.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Free vibration of electroelastic thin-walled structures under static load 静载荷下电弹性薄壁结构的自由振动
IF 3.4 3区 工程技术
International Journal of Solids and Structures Pub Date : 2024-10-29 DOI: 10.1016/j.ijsolstr.2024.113123
{"title":"Free vibration of electroelastic thin-walled structures under static load","authors":"","doi":"10.1016/j.ijsolstr.2024.113123","DOIUrl":"10.1016/j.ijsolstr.2024.113123","url":null,"abstract":"<div><div>The mathematical formulation and finite element algorithm for solving the problem of free vibration of electroelastic plates and shells under static load are considered. In modeling, the curvilinear surface of a thin-walled structure is represented as a set of flat segments. In each of them, the physical relations of the classical laminated plate theory and the theory of electroelasticity, written for a plane stress state, are fulfilled. The strains are determined using nonlinear equations, which are linearized with respect to the state with a small deviation from the initial equilibrium position caused by static forces. As an examples, we consider a rectangular plate and a circular cylindrical shell with a piezoelectric element under the action of the uniform pressure. The validity of the solution is confirmed by comparing the normal displacement and natural frequencies of vibration with experimental data and results obtained with the use of commercial finite element software.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabarriers for mitigating traffic-induced surface waves: Mechanism dependence on buried arrangements 用于减缓交通引起的表面波的元载体:机制取决于埋设方式
IF 3.4 3区 工程技术
International Journal of Solids and Structures Pub Date : 2024-10-28 DOI: 10.1016/j.ijsolstr.2024.113120
{"title":"Metabarriers for mitigating traffic-induced surface waves: Mechanism dependence on buried arrangements","authors":"","doi":"10.1016/j.ijsolstr.2024.113120","DOIUrl":"10.1016/j.ijsolstr.2024.113120","url":null,"abstract":"<div><div>Locally resonant metamaterials provide exceptional wave manipulation capabilities in the low-frequency regime. This study introduces a buried metabarrier, which can simultaneously harness both resonant and geometric scatterings, to attenuate surface Rayleigh waves at both low and high frequencies induced by traffic. In particular, how the buried arrangements of metabarriers influence their resonant- and geometric-scattering mechanisms is investigated by considering the metabarrier units buried vertically and horizontally in the ground. To this purpose, a numerical finite element model, which is verified through comparisons with existing studies, is developed to analyze the attenuation performance of the metabarrier. Using this model, we perform parametric studies to examine the effects of the material properties and dimensions of the metabarriers on their attenuation behavior. Due to resonant scattering, low-frequency Rayleigh waves are mainly reflected by the vertical metabarriers; in contrast, they are predominantly converted into refracted bulk waves by the horizontal metabarriers. Additionally, the geometric scattering of horizontal metabarriers yields Bragg effects, which can reflect more high-frequency Rayleigh waves and induce a partial mode conversion to transverse bulk waves. Our systematic investigations will, to some extent, facilitate the future design of a well-performing metabarrier attenuating broadband Rayleigh waves.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and sound absorption analysis of labyrinthine acoustic metamaterials based on fractal theory 基于分形理论的迷宫式声学超材料的设计与吸声分析
IF 3.4 3区 工程技术
International Journal of Solids and Structures Pub Date : 2024-10-28 DOI: 10.1016/j.ijsolstr.2024.113121
{"title":"Design and sound absorption analysis of labyrinthine acoustic metamaterials based on fractal theory","authors":"","doi":"10.1016/j.ijsolstr.2024.113121","DOIUrl":"10.1016/j.ijsolstr.2024.113121","url":null,"abstract":"<div><div>Acoustic metamaterials exhibit exceptional sound absorption capabilities. This study introduces a fractal labyrinthine acoustic metamaterial (FLAM) designed for sound absorption analyses in a low-frequency range of 1–2000 Hz. The fractal curve is constructed through side substitution on an isosceles right triangle, which is chosen as the spatial recursive substructure due to its self-similarity. The FLAM model is then developed. With the thermal viscous losses considered in narrow channels, the sound absorption coefficient of this model is theoretically analyzed as the structural parameters significantly affect the sound absorption. A comprehensive analysis of low-frequency sound absorption performance is conducted for the first three orders, and the reconstruction of the structure with different combinations of fractal orders is examined to optimize the FLAM. The results show that the proposed FLAM achieves nearly perfect absorption in the 50–400 Hz range, with peak absorption coefficients of 0.99, 0.95, and 0.95 for the first three orders. The proposed FLAMs for the first three orders have total thicknesses of <span><math><mrow><mn>0.032</mn><mi>λ</mi></mrow></math></span>, <span><math><mrow><mn>0.021</mn><mi>λ</mi></mrow></math></span>, and <span><math><mrow><mn>0.019</mn><mi>λ</mi></mrow></math></span>, demonstrating excellent low-frequency sound absorption at deep sub-wavelength scales.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mixed-mode fracture prediction of notched components using phase-field approach 利用相场方法预测缺口部件的混合模式断裂
IF 3.4 3区 工程技术
International Journal of Solids and Structures Pub Date : 2024-10-26 DOI: 10.1016/j.ijsolstr.2024.113113
{"title":"Mixed-mode fracture prediction of notched components using phase-field approach","authors":"","doi":"10.1016/j.ijsolstr.2024.113113","DOIUrl":"10.1016/j.ijsolstr.2024.113113","url":null,"abstract":"<div><div>The application of the phase-field method (PFM) to brittle fracture for studying complex fracture phenomena has recently gained attention from researchers. However, there has been limited emphasis on predicting fracture loads for notched components. In this study, numerous phase-field simulations were conducted to compute the fracture load and crack initiation angle in brittle notched components under in-plane loading conditions. The accuracy of the results, verified against experimental data, demonstrates the PFM’s ability to precisely predict both fracture load and fracture initiation angle. Additionally, it has been demonstrated that Miehe’s spectral decomposition method provides more reliable results for notched Brazilian Disc specimens subjected to compressive loading than those obtained using Amor’s volumetric-deviatoric split method.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptively remeshed multiphysical modeling of resistance forge welding with experimental validation of residual stress fields and measurement processes 通过残余应力场和测量过程的实验验证,自适应重塑电阻锻造焊接的多物理模型
IF 3.4 3区 工程技术
International Journal of Solids and Structures Pub Date : 2024-10-24 DOI: 10.1016/j.ijsolstr.2024.113112
{"title":"Adaptively remeshed multiphysical modeling of resistance forge welding with experimental validation of residual stress fields and measurement processes","authors":"","doi":"10.1016/j.ijsolstr.2024.113112","DOIUrl":"10.1016/j.ijsolstr.2024.113112","url":null,"abstract":"<div><div>Welding processes used in the production of pressure vessels impart residual stresses in the manufactured component. Computational modeling is critical to predicting these residual stress fields and understanding how they interact with notches and flaws to impact pressure vessel durability. In this work, we present a finite element model for a resistance forge weld and validate it using laboratory measurements. Extensive microstructural changes, near-melt temperatures, and large localized deformations along the weld interface pose significant challenges to Lagrangian finite element modeling. The proposed modeling approach overcomes these roadblocks in order to provide a high-fidelity simulation that can predict the residual stress state in the manufactured pressure vessel; a rich microstructural constitutive model accounts for material recrystallization dynamics, a frictional-to-tied contact model is coordinated with the constitutive model to represent interfacial bonding, and adaptive remeshing is employed to alleviate severe mesh distortion. An interrupted-weld approach is applied to the simulation to facilitate comparison to displacement measures. Several techniques are employed for residual stress measurement in order to validate the finite element model: neutron diffraction, the contour method, and the slitting method. Model-measurement comparisons are supplemented with detailed simulations that reflect the configurations of the residual-stress measurement processes themselves. The model results show general agreement with experimental measurements, and we observe some similarities in the features around the weld region. Factors that contribute to model-measurement differences are identified. Finally, we conclude with some discussion of the model development and residual stress measurement strategies, including how to best leverage the efforts put forth here for other weld problems.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An investigation of rapid surface melting in nanowires 纳米线表面快速熔化的研究
IF 3.4 3区 工程技术
International Journal of Solids and Structures Pub Date : 2024-10-23 DOI: 10.1016/j.ijsolstr.2024.113106
{"title":"An investigation of rapid surface melting in nanowires","authors":"","doi":"10.1016/j.ijsolstr.2024.113106","DOIUrl":"10.1016/j.ijsolstr.2024.113106","url":null,"abstract":"<div><div>The investigation into virtual melting phenomena in nanowires holds significant relevance owing to its profound impact on material durability under extreme loading conditions. Thus, the exploration of this pivotal plastic deformation mechanism is undertaken utilizing the phase-field methodology. Employing a monolithic solver, we solve the coupled highly nonlinear time-dependent Ginzburg–Landau equation and dynamic elasticity equation. Our analysis encompasses the consideration of surface tension stress in conjunction with a coherent solid–liquid interface subjected to uniaxial transformation strain, thereby unveiling intriguing facets of melting phenomena. The investigation delves into the influence of transformation strain, kinetic coefficient, and temperature on the thickness of the solid–liquid interface and its corresponding velocity. This analysis is conducted through meticulous comparison with existing experimental data and molecular dynamics simulation. Moreover, employing the phase-field method yields precise descriptions of the system kinetics, capturing virtual melting phenomena in both pristine and flawed nanowire configurations.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constitutive modeling of thermo-chemical decomposition and thermo-mechanical deformation, coupled with transient heat conduction, in ablative matrix composite 烧蚀基复合材料热化学分解和热机械变形以及瞬态热传导的结构建模
IF 3.4 3区 工程技术
International Journal of Solids and Structures Pub Date : 2024-10-23 DOI: 10.1016/j.ijsolstr.2024.113100
{"title":"Constitutive modeling of thermo-chemical decomposition and thermo-mechanical deformation, coupled with transient heat conduction, in ablative matrix composite","authors":"","doi":"10.1016/j.ijsolstr.2024.113100","DOIUrl":"10.1016/j.ijsolstr.2024.113100","url":null,"abstract":"<div><div>Several thermal protection systems employ sacrificial composite layer that undergoes thermo-chemical decomposition in high-temperature environment. This results in the pyrolysis gas formation (endothermic reaction) that gets trapped inside the voids generated in the ablative matrix phase. These trapped gases apply pore pressure on the structure, along with the mechanical loading, thus significantly influencing the structure failure. A novel thermo-chemical (TC) decomposition and thermo-mechanical (TM) deformation-based coupled multi-physics formulation, applicable to ablative composite systems, is thus presented. A novel shrinkage expression, due to ablative matrix decomposition, is derived. The TC + TM coupled formulation is converted to stress update process, and its results are validated against the available experimental data. The proposed formulation is also converted to boundary value problem employing non-linear finite element framework (NL-FEM). The Jacobian matrices, for one- and two-dimensional cases, are systematically derived, and the proposed NL-FEM formulation is successfully verified against several benchmark problems.</div><div>The transient heat conduction equation is finally coupled with the proposed TC + TM formulation (one-way coupling) thus enabling the analysis of more realistic situations where the constant heating rate assumption is not valid. The coupled formulation is finally implemented for several test cases and it is demonstrated that, it has a significant influence on pore pressure and porosity evolution (through pore volumetric strain) within the ablative matrix phase.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Buckling analysis of PMMA hemispherical pressure shells with thickness variation 具有厚度变化的 PMMA 半球形压力壳的屈曲分析
IF 3.4 3区 工程技术
International Journal of Solids and Structures Pub Date : 2024-10-22 DOI: 10.1016/j.ijsolstr.2024.113109
{"title":"Buckling analysis of PMMA hemispherical pressure shells with thickness variation","authors":"","doi":"10.1016/j.ijsolstr.2024.113109","DOIUrl":"10.1016/j.ijsolstr.2024.113109","url":null,"abstract":"<div><div>The buckling behaviour of polymethyl methacrylate (PMMA) hemispherical pressure shells under uniform external pressure was investigated experimentally and numerically. Six PMMA hemispherical pressure shells were prepared via the free blow-forming process. The geometry and wall thickness of each hemispherical shell were measured. The collapse loads and final failure modes of all shells were obtained via a hydrostatic pressure device. In addition, through optical 3D scanning, a numerical model of the hemispherical shell that reflects the actual geometric imperfection was established and used in the finite element buckling analysis. The numerical results were in agreement with the test results. These findings provide a reference for evaluating the buckling load of PMMA hemispherical shells prepared via the free blow-forming process.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信