International Journal of Refrigeration-revue Internationale Du Froid最新文献

筛选
英文 中文
Overview of a newly-installed high-temperature heat pump demonstrator coupled with high-temperature mine thermal energy storage 新安装的高温热泵示范装置与高温矿井热能储存装置概览
IF 3.5 2区 工程技术
International Journal of Refrigeration-revue Internationale Du Froid Pub Date : 2024-08-08 DOI: 10.1016/j.ijrefrig.2024.08.002
{"title":"Overview of a newly-installed high-temperature heat pump demonstrator coupled with high-temperature mine thermal energy storage","authors":"","doi":"10.1016/j.ijrefrig.2024.08.002","DOIUrl":"10.1016/j.ijrefrig.2024.08.002","url":null,"abstract":"<div><p>The research aims to prove that renewable energy sources in the heating sector can enable the energy transition towards European and German CO<sub>2</sub> reduction targets.</p><p>To do so, at the premises of the Fraunhofer IEG Institute in Bochum a demonstrator for high-temperature heat pumps (HTHPs), coupled with seasonal high-temperature mine thermal energy storage (MTES), was developed.</p><p>The goal is achieved by demonstrating the feasibility of the technology by connecting mine water present in a small flooded coal colliery (MTES) to solar parabolic trough collectors (SPTCs) and also to a HTHP system that serves the local district heating (DH) grid of Bochum south.</p><p>The MTES, with an estimated water volume of approximately 20000 m<sup>3</sup> is employed as seasonal storage for a 500 kW HTHP system that can reach a supply temperature of 120°C, as needed by the existing DH grid when the ambient temperature is lower or equal to -10°C.</p><p>During the summer operation, the heat is injected into the MTES from the SPTCs to obtain a mine water temperature of 60°C; and in the winter operation, the heat is extracted through the HTHP until the mine water reaches the unheated temperature of 12°C at the end of the heating season.</p><p>A literature review of the main components of the plant, the description of the installed system parts and performed tests are reported, along with the results of the successfully executed tests.</p></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0140700724002706/pdfft?md5=8bd13f34fa4a473178ad7788989d99e8&pid=1-s2.0-S0140700724002706-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142128729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental study on water vapor sorption performance of metal organic frameworks and their application potential for indoor air dehumidification 金属有机框架的水蒸气吸附性能实验研究及其在室内空气除湿中的应用潜力
IF 3.5 2区 工程技术
International Journal of Refrigeration-revue Internationale Du Froid Pub Date : 2024-08-06 DOI: 10.1016/j.ijrefrig.2024.08.007
{"title":"Experimental study on water vapor sorption performance of metal organic frameworks and their application potential for indoor air dehumidification","authors":"","doi":"10.1016/j.ijrefrig.2024.08.007","DOIUrl":"10.1016/j.ijrefrig.2024.08.007","url":null,"abstract":"<div><p>This study investigates the water vapor sorption performance of five metal organic framework materials (MIL-101(Cr), MIL-100(Fe), aluminum fumarate, MOF-303(Al), PCN-333(Al)) for indoor environment humidity control through experiment measurements, aims to identify materials that enhance water vapor adsorption capacity and allow for low temperature regeneration. The results show that MIL-101(Cr) exhibits highest water vapor adsorption capacity which is 3.5 to 6 times of conventional desiccant materials. The adsorption isotherm of MIL-101(Cr) exhibits an \"S\" type change, with a steep point between 30 % and 60 % RH which falls within the indoor thermal comfortable range. The experiment results also show that MIL-101(Cr) is nearly completely desorbed at relative humidity of 20 %, indicating its potential for low-temperature regeneration. Based on its strong water vapor sorption performance, the green and low-cost synthesis method will be the key for its utilization to improve the efficiency of solid desiccant air conditioning system.</p></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance evaluation and multi-objective optimization of a tubular indirect evaporative cooler integrated with moisture-conducting fibers 集成了导湿纤维的管式间接蒸发冷却器的性能评估和多目标优化
IF 3.5 2区 工程技术
International Journal of Refrigeration-revue Internationale Du Froid Pub Date : 2024-08-03 DOI: 10.1016/j.ijrefrig.2024.07.028
{"title":"Performance evaluation and multi-objective optimization of a tubular indirect evaporative cooler integrated with moisture-conducting fibers","authors":"","doi":"10.1016/j.ijrefrig.2024.07.028","DOIUrl":"10.1016/j.ijrefrig.2024.07.028","url":null,"abstract":"<div><p>Indirect evaporative cooling (IEC) technology is an energy-efficient approach for regulating the indoor thermal environment of buildings. The conventional tubular indirect evaporative cooler (TIEC) may have a relatively low cooling efficiency due to poor wettability issues. The application of moisture-conducting fibers provides a feasible way to solve the above problem. However, the integration of moisture-conducting fibers with TIEC is still in the exploratory stage. This study proposed a novel moisture-conducting fiber-assisted TIEC and conducted a multi-objective optimization. An experimental facility and theoretical model of the proposed moisture-conducting fiber-assisted TIEC were developed. Based on the numerical model validated by experiments and response surface methodology (RSM), the regression models for performance prediction of the cooler were established. Eight input parameters including inlet air parameters, operating parameters and geometric parameters were selected, and four performance evaluation indicators were chosen as output responses. The parameter sensitivity of the regression models was analyzed. The multi-objective optimization was performed by considering the influence of different relative weights assigned to the output responses. Furthermore, the performance of the optimized cooler applied in different climate zones was predicted. The results showed that the product air temperature drop could achieve 8.8–11.3 °C after cooling by the cooler. The established regression models can predict the performance of the moisture-conducting fiber-assisted TIEC conveniently and effectively, which is expected to guide the design and optimization of engineering practices.</p></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boiling heat transfer characteristics of distributed jet array impingement on metal foam covers with different wettability 分布式射流阵列撞击不同润湿性金属泡沫盖板的沸腾传热特性
IF 3.5 2区 工程技术
International Journal of Refrigeration-revue Internationale Du Froid Pub Date : 2024-08-02 DOI: 10.1016/j.ijrefrig.2024.08.001
{"title":"Boiling heat transfer characteristics of distributed jet array impingement on metal foam covers with different wettability","authors":"","doi":"10.1016/j.ijrefrig.2024.08.001","DOIUrl":"10.1016/j.ijrefrig.2024.08.001","url":null,"abstract":"<div><p>Wettability may have significant influence on jet impingement boiling on metal foam, but the effect mechanism of metal foam wettability remains unclear. In this study, the boiling heat transfer characteristics of distributed jet array impingement on hydrophobic and hydrophilic metal foam covers were experimentally researched and compared with those on uncoated metal foam covers to analyze the influence of wettability. The experimental conditions cover contact angles of 14.0–158.7°, pore densities of 20–40 PPI, porosities of 92 %-97 %, thicknesses of 3.0–5.0 mm, and jet velocities of 0.5–4.0 m·s<sup>−1</sup>. The results show that, the obtained maximum heat flux and maximum heat transfer coefficient are up to 538.1 W cm<sup>−2</sup> and 57.9 Kw m<sup>−2</sup> K<sup>−1</sup>, respectively; the hydrophobic metal foam cover has a 4.8 K lower surface superheated degree at the onset of nucleate boiling, but a 7.5 % lower maximum heat transfer coefficient compared with the uncoated one; the hydrophilic metal foam cover shows a less deterioration after the departure from nucleate boiling but a 5.3 K higher surface superheated degree at the onset of nucleate boiling than those of the uncoated one. A new correlation for boiling heat transfer coefficients was developed with a mean relative error of 9.75 %.</p></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feed-forward compensation for emulator-type testing facilities 仿真器类型测试设施的前馈补偿
IF 3.5 2区 工程技术
International Journal of Refrigeration-revue Internationale Du Froid Pub Date : 2024-07-31 DOI: 10.1016/j.ijrefrig.2024.07.023
{"title":"Feed-forward compensation for emulator-type testing facilities","authors":"","doi":"10.1016/j.ijrefrig.2024.07.023","DOIUrl":"10.1016/j.ijrefrig.2024.07.023","url":null,"abstract":"<div><p>Defining the required trackability level of the target condition for the testing facility reconditioning unit represents an unresolved challenge in improving the reproducibility of load-based tests and corresponding performance rating standards development. To enhance the reproducibility of such testing methodology, this paper presents and discusses a new feed-forward compensation technique based on the development of a transfer function model for the delay and offset characteristics of the psychrometric room's air temperature and humidity modulations with reference to the target signal from the room emulator. It is demonstrated that the proposed methodology enables offset and delay reduction in the trackability of the return air condition within 60 s at different testing conditions, enhances the reproducibility of the test results to limit performance deviations to within 2 %, and achieves closely matched controlled parameter modulations during load-based tests.</p></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142128728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing airflow in spiral blast freezers 优化螺旋鼓风式冷冻机中的气流
IF 3.5 2区 工程技术
International Journal of Refrigeration-revue Internationale Du Froid Pub Date : 2024-07-30 DOI: 10.1016/j.ijrefrig.2024.07.015
{"title":"Optimizing airflow in spiral blast freezers","authors":"","doi":"10.1016/j.ijrefrig.2024.07.015","DOIUrl":"10.1016/j.ijrefrig.2024.07.015","url":null,"abstract":"<div><p>Spiral blast freezing is a common unit operation used in food processing facilities for rapidly freezing a variety of foodstuffs. The purpose of a blast freezer is to generate high velocity, low temperature air flow over food products being conveyed within refrigerated enclosures to accomplish the freezing process. However, air flow patterns observed within field operating blast freezers are often suboptimal, resulting in diminished system performance. This paper applies a Monte Carlo simulation technique to a food product freezing simulation in order to identify velocity profiles that optimize the freezing process. A one-dimensional food product model is used to evaluate the interplay between the time variation in the magnitude of the air velocity over food products conveyed through the freezing system and the resulting dwell time needed to achieve a target product core temperature at the blast freezer exit. Temporal heat transfer coefficients derived from field measurements made in a newly installed spiral blast freezer serve as a basis to calibrate the one-dimensional product model.</p><p>The results of the Monte Carlo analysis show freezing system performance is improved when high and stable air velocities over the product are achieved early in the freezing process dwell time. Air flow patterns within a freezing system that result in high air velocity later in the freezing process dwell time are suboptimal. Field-measured data on a newly installed spiral blast freezer showed this suboptimal air flow pattern and the use of baffling within the spiral enables improved airflow leading to an estimated 10 % increase in production throughput.</p></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141997892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical investigation on spray cooling of skid-mounted CNG air cooler under the influence of crosswind 横风影响下撬装压缩天然气空气冷却器喷雾冷却的数值研究
IF 3.5 2区 工程技术
International Journal of Refrigeration-revue Internationale Du Froid Pub Date : 2024-07-29 DOI: 10.1016/j.ijrefrig.2024.07.025
{"title":"Numerical investigation on spray cooling of skid-mounted CNG air cooler under the influence of crosswind","authors":"","doi":"10.1016/j.ijrefrig.2024.07.025","DOIUrl":"10.1016/j.ijrefrig.2024.07.025","url":null,"abstract":"<div><p>Air cooler is a critical heat dissipation equipment applied in the field of oil and gas storage, which is mainly used to control the temperature during oil and gas storage and ensure the safety of oil and gas storage. After the installation of the spray cooling system on the skid-mounted compressed natural gas (CNG) air cooler Suqiao gas storage, the inlet air temperature of the air cooler decreases, resulting in reduced compressor power consumption. This effectively addresses the issue of unit shutdown due to high temperatures during the summer. However, the actual spray effect on-site reveals the impact of crosswinds, which poses a challenge. In this study, the flow field and causes of the skid-mounted CNG air cooler equipped with a spray cooling system under the influence of crosswinds are analyzed. Additionally, a solution involving the installation of a baffle is proposed. The results highlight that crosswinds have an adverse effect on outdoor spray cooling. With the installation of the baffle, the low-temperature area expands, resulting in lower temperatures. The cooling range is approximately 2 K, effectively counteracting the negative effects of crosswinds.</p></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achieving high stability in Cryostat: A study on optimal thermal link parameters 实现低温恒温器的高稳定性:最佳热链参数研究
IF 3.5 2区 工程技术
International Journal of Refrigeration-revue Internationale Du Froid Pub Date : 2024-07-29 DOI: 10.1016/j.ijrefrig.2024.07.026
{"title":"Achieving high stability in Cryostat: A study on optimal thermal link parameters","authors":"","doi":"10.1016/j.ijrefrig.2024.07.026","DOIUrl":"10.1016/j.ijrefrig.2024.07.026","url":null,"abstract":"<div><p>Thermal link is an important carrier used to transfer the cooling capacity and suppress the temperature fluctuation in cryostat. To balance these two points, it is usually necessary to find the optimum thermal link parameters. This paper establishes a model for the cryocooler cold head-thermal link-second flange based on a cryostat. Utilizing the response surface method, response equations correlating thermal link parameters with the temperature and its fluctuations of the second stage flange are developed at the lowest temperature of cryocooler. Through dual-objective optimization of cooling capacity transfer and temperature fluctuations at the second flange, the optimal thermal link parameters are determined and experimentally validated based on predicted results. The experimental and predicted values show good agreement with an error of 2 %. The optimized thermal link led a minor temperature increase and a significant temperature fluctuation reduction, decreasing from 230mK at the cold head to 2.900mK at the second flange, achieving a 98.74 % reduction. Furthermore, compared with non-optimization structure, the optimization one has further lowered the temperature fluctuation at the second flange from 4.000mK to 2.900mK with 27.5 % improvement. These results show that the present methods are reliable and useful to help to realize highly stable low-temperature environment in cryostat.</p></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141991032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of purge with multi-sector, novel designs, and configurations of desiccant wheels: A technical review 使用多扇区、新颖设计和配置的干燥剂轮进行净化的演变:A TECHNICAL REVIEW{fr}ÉVOLUTION DE LA PURGE AVEC DES CONCEPTIONS MULTISECTORIELLES, NOUVELLES ET CONFIGURATIONS DE ROUES DESSICANTES:une revue technique
IF 3.5 2区 工程技术
International Journal of Refrigeration-revue Internationale Du Froid Pub Date : 2024-07-25 DOI: 10.1016/j.ijrefrig.2024.07.021
{"title":"Evolution of purge with multi-sector, novel designs, and configurations of desiccant wheels: A technical review","authors":"","doi":"10.1016/j.ijrefrig.2024.07.021","DOIUrl":"10.1016/j.ijrefrig.2024.07.021","url":null,"abstract":"<div><p>This review provides a comprehensive summary of research pertaining to the purge section within desiccant wheels featuring multi-sector configurations. Additionally, it encompasses discussions on innovative wheel designs such as non-adiabatic desiccant wheels and the achievement of two-stage dehumidification from a single wheel employing multi-sector approaches. The review begins by providing a concise historical overview of the desiccant wheel, followed by a systematic classification of the research conducted in this area. Subsequently, various categorizations are presented in a logical sequence, offering a structured understanding of the subject matter. Central to the critical findings of this review is the identification of an optimal purge wheel sector angle, which not only decreases the energy consumption of the desiccant wheel but also significantly reduces the exit temperature of process air. Moreover, the review highlights the potential of achieving isothermal dehumidification through the utilization of non-adiabatic rotary desiccant wheels. Furthermore, the introduction of a multi-sector desiccant wheel is one of the key successes in obtaining two-stage dehumidification and getting multi-output like cooling, heating with dehumidification, and heating with humidification. These are all efficiently derived from a single wheel.</p></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141852915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sorption kinetics of salt-in-porous-matrix composites: The effect of expanded natural graphite on cooling power 盐在多孔基质复合材料中的吸附动力学:膨胀天然石墨对冷却功率的影响
IF 3.5 2区 工程技术
International Journal of Refrigeration-revue Internationale Du Froid Pub Date : 2024-07-25 DOI: 10.1016/j.ijrefrig.2024.07.004
{"title":"Sorption kinetics of salt-in-porous-matrix composites: The effect of expanded natural graphite on cooling power","authors":"","doi":"10.1016/j.ijrefrig.2024.07.004","DOIUrl":"10.1016/j.ijrefrig.2024.07.004","url":null,"abstract":"<div><p>Sorption heat transformers and thermal energy storage systems are emerging technologies that utilize and store low-grade waste heat for heating and cooling applications. The performance of sorption systems is not only affected by systems’ operating conditions, and overall systems’ design but also by sorption material or composite parameters such as thermal diffusivity, composition, and pore structure, among others. In this study, CaCl<sub>2</sub>-based salt-in-porous-matrix composites of different compositions and coating thicknesses were synthesized. During synthesis, salt to silica gel and polyvinyl alcohol to silica gel ratios were fixed and the thermal additive (expanded natural graphite) to silica gel ratio was varied with care from 0 to 0.26 (or 0 to 20.5 wt.%, additive to silica gel ratio). The thickness of samples varied from 2.3 to 8.3 ± 0.1 mm. The composites were characterized by a transient plane source (thermal conductivity and thermal diffusivity), nitrogen adsorption porosimetry (specific surface area and total pore volume), and thermogravimetric sorption analysis (water sorption equilibrium) methods. A custom-built gravimetric large pressure jump (G-LPJ) testbed was used to study water sorption kinetics (water uptake vs. time) for selected samples. The thermal conductivity and diffusivity of the studied composite samples have shown significant enhancements, e.g., 240% (0.11 W/(m·K) vs. 0.37 W/(m·K)) and 310% (0.21 mm<sup>2</sup>/s vs. 0.87 mm<sup>2</sup>/s), respectively, by adding 12.5 wt.% expanded natural graphite (additive to silica gel ratio is 0.14) as a thermally conductive additive (additive to silica gel ratio) because of thermal percolation effect. This ratio of expanded natural graphite to silica gel was found to be optimal for studied composition. The results indicate that sorption composites with higher thermal diffusivity offer notably higher specific cooling power and improved sorption kinetics, compared to the composites without expanded natural graphite of the same thickness (850 W/kg vs. 480 W/kg at 70% water conversion for samples with thickness of 5.3 mm).</p></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0140700724002342/pdfft?md5=38615de28bc3a619c7c47a39cde43574&pid=1-s2.0-S0140700724002342-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信