International Journal of Radiation Biology最新文献

筛选
英文 中文
Biomarkers of radioresistance in head and neck squamous cell carcinomas. 头颈部鳞状细胞癌放射耐药的生物标志物。
IF 2.6 4区 医学
International Journal of Radiation Biology Pub Date : 2023-01-01 DOI: 10.1080/09553002.2022.2110301
Delphine Avril, Jean-Philippe Foy, Jebrane Bouaoud, Vincent Grégoire, Pierre Saintigny
{"title":"Biomarkers of radioresistance in head and neck squamous cell carcinomas.","authors":"Delphine Avril,&nbsp;Jean-Philippe Foy,&nbsp;Jebrane Bouaoud,&nbsp;Vincent Grégoire,&nbsp;Pierre Saintigny","doi":"10.1080/09553002.2022.2110301","DOIUrl":"https://doi.org/10.1080/09553002.2022.2110301","url":null,"abstract":"<p><strong>Purpose: </strong>Head and neck squamous cell carcinoma (HNSCC) is a major cause of morbidity and mortality. Although HNSCC is mainly caused by tobacco and alcohol consumption, infection by Human Papilloma Virus (HPV) has been also associated with the increasing incidence of oropharyngeal squamous cell carcinomas (OPSCC) during the past decades. HPV-positive HNSCC is characterized by a higher radiosensitivity compared to HPV-negative tumor. While several clinical trials are evaluating de-escaladed radiation doses strategies in HPV-positive HNSCC, molecular mechanisms associated with relative radioresistance in HPV-negative HNSCC are still broadly unknown. Our goal was to review recently proposed biomarkers of radioresistance in this setting, which may be useful for stratifying tumor's patient according to predicted level of radioresistance.</p><p><strong>Conclusions: </strong>most of biomarkers of radioresistance in HPV-negative HNSCC are identified using a hypothesis-driven approach, based on molecular mechanisms known to play a key role during carcinogenesis, compared to an unsupervised data-driven approach regardless the biological rational. DNA repair and hypoxia are the two most widely investigated biological and targetable pathways related to radioresistance in HNSCC. The better understanding of molecular mechanisms and biomarkers of radioresistance in HPV-negative HNSCC could help for the development of radiosensitization strategies, based on targetable biomarkers, in radioresistant tumors as well as de-escalation radiation dose strategies, based on biological level of radioresistance, in radiosensitive tumors.</p>","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":"99 4","pages":"583-593"},"PeriodicalIF":2.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9498858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
The delayed effects of acute radiation exposure (DEARE): characteristics, mechanisms, animal models, and promising medical countermeasures. 急性辐照的延迟效应(DEARE):特征、机制、动物模型和有前途的医疗对策。
IF 2.1 4区 医学
International Journal of Radiation Biology Pub Date : 2023-01-01 Epub Date: 2023-03-16 DOI: 10.1080/09553002.2023.2187479
Tong Wu, Christie M Orschell
{"title":"The delayed effects of acute radiation exposure (DEARE): characteristics, mechanisms, animal models, and promising medical countermeasures.","authors":"Tong Wu, Christie M Orschell","doi":"10.1080/09553002.2023.2187479","DOIUrl":"10.1080/09553002.2023.2187479","url":null,"abstract":"<p><strong>Purpose: </strong>Terrorist use of nuclear weapons and radiation accidents put the human population at risk for exposure to life-threatening levels of radiation. Victims of lethal radiation exposure face potentially lethal acute injury, while survivors of the acute phase are plagued with chronic debilitating multi-organ injuries for years after exposure. Developing effective medical countermeasures (MCM) for the treatment of radiation exposure is an urgent need that relies heavily on studies conducted in reliable and well-characterized animal models according to the FDA Animal Rule. Although relevant animal models have been developed in several species and four MCM for treatment of the acute radiation syndrome are now FDA-approved, animal models for the delayed effects of acute radiation exposure (DEARE) have only recently been developed, and there are no licensed MCM for DEARE. Herein, we provide a review of the DEARE including key characteristics of the DEARE gleaned from human data as well as animal, mechanisms common to multi-organ DEARE, small and large animal models used to study the DEARE, and promising new or repurposed MCM under development for alleviation of the DEARE.</p><p><strong>Conclusions: </strong>Intensification of research efforts and support focused on better understanding of mechanisms and natural history of DEARE are urgently needed. Such knowledge provides the necessary first steps toward the design and development of MCM that effectively alleviate the life-debilitating consequences of the DEARE for the benefit of humankind worldwide.</p>","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":"99 7","pages":"1066-1079"},"PeriodicalIF":2.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10330482/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9766477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transgenerational changes in Daphnia magna under radio frequency radiation in the juvenile and puberty period. 幼年期和发育期大水蚤在射频辐射下的跨代变化。
IF 2.6 4区 医学
International Journal of Radiation Biology Pub Date : 2023-01-01 DOI: 10.1080/09553002.2022.2087928
Elena I Sarapultseva, Darya V Uskalova, Ksenya V Ustenko, Viktor N Tikhonov, Igor A Ivanov, Alexander V Tikhonov
{"title":"Transgenerational changes in <i>Daphnia magna</i> under radio frequency radiation in the juvenile and puberty period.","authors":"Elena I Sarapultseva,&nbsp;Darya V Uskalova,&nbsp;Ksenya V Ustenko,&nbsp;Viktor N Tikhonov,&nbsp;Igor A Ivanov,&nbsp;Alexander V Tikhonov","doi":"10.1080/09553002.2022.2087928","DOIUrl":"https://doi.org/10.1080/09553002.2022.2087928","url":null,"abstract":"<p><strong>Purpose: </strong>To analyze the results of direct and transgenerational effects of radio frequency electromagnetic fields (RF-EMF) on the model organism of crustaceans <i>Daphnia magna</i>.</p><p><strong>Materials and methods: </strong><i>D. magna</i> were chronically exposed at 900 GHz EMF with an energy flux density (EFD) of about 1 mW/cm<sup>2</sup> in the juvenile and pubertal periods of their ontogenesis. The cytotoxicity of exposure as well as survival, fertility and teratogenic effect of directly exposed daphnids and their progeny across three generations were analyzed.</p><p><strong>Results and conclusions: </strong>The results of our study show that exposure of RF-EMF at juvenile period can significantly affect the fertility and size of irradiated daphnids and their offspring of the first generation. The decrease in fertility may be associated with a cytotoxic effect on the cells of irradiated animals. The reduction in the size of the terminal spine and the body of individuals is an indicator of the negative impact of radiation on the protective strategy of the crustacean population. The reproductive process is restored by the second generation. The results of our study provide further insights into the possible mechanisms underlying the in vivo effects of RF-EMF.</p>","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":"99 3","pages":"551-560"},"PeriodicalIF":2.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9797001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Candidate biomarkers and persistent transcriptional responses after low and high dose ionizing radiation at high dose rate. 高剂量率低剂量和高剂量电离辐射后的候选生物标志物和持续转录反应。
IF 2.4 4区 医学
International Journal of Radiation Biology Pub Date : 2023-01-01 Epub Date: 2023-08-07 DOI: 10.1080/09553002.2023.2241897
Zhenqiu Liu, John Cologne, Sally A Amundson, Asao Noda
{"title":"Candidate biomarkers and persistent transcriptional responses after low and high dose ionizing radiation at high dose rate.","authors":"Zhenqiu Liu, John Cologne, Sally A Amundson, Asao Noda","doi":"10.1080/09553002.2023.2241897","DOIUrl":"10.1080/09553002.2023.2241897","url":null,"abstract":"<p><strong>Purpose: </strong>Development of an integrated time and dose model to explore the dynamics of gene expression alterations and identify biomarkers for biodosimetry following low- and high-dose irradiations at high dose rate.</p><p><strong>Material and methods: </strong>We utilized multiple transcriptome datasets (GSE8917, GSE43151, and GSE23515) from Gene Expression Omnibus (GEO) for identifying candidate biological dosimeters. A linear mixed-effects model with random intercept was used to explore the dose-time dynamics of transcriptional responses and to functionally characterize the time- and dose-dependent changes in gene expression.</p><p><strong>Results: </strong>We identified genes that are correlated with dose and time and discovered two clusters of genes that are either positively or negatively correlated with both dose and time based on the parameters of the model. Genes in these two clusters may have persistent transcriptional alterations. Twelve potential transcriptional markers for dosimetry-ARHGEF3, BAX, BBC3, CCDC109B, DCP1B, DDB2, F11R, GADD45A, GSS, PLK3, TNFRSF10B, and XPC were identified. Of these genes, BAX, GSS, and TNFRSF10B are positively associated with both dose and time course, have a persistent transcriptional response, and might be better biological dosimeters.</p><p><strong>Conclusions: </strong>With the proposed approach, we may identify candidate biomarkers that change monotonically in relation to dose, have a persistent transcriptional response, and are reliable over a wide dose range.</p>","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":" ","pages":"1853-1864"},"PeriodicalIF":2.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10845127/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9953611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The use of the normal tissue non-complication probability (NTCP0) in the safety evaluations as a new alternative of assessing the side-effects of the radiation oncology treatments. 将正常组织无并发症概率(NTCP0)应用于肿瘤放射治疗的安全性评价,作为评价肿瘤放射治疗副作用的新方法。
IF 2.6 4区 医学
International Journal of Radiation Biology Pub Date : 2023-01-01 DOI: 10.1080/09553002.2022.2110299
Terman Frometa-Castillo, Anil Pyakuryal, Ganesh Narayanasamy, Amadeo Wals-Zurita, Asghar Mesbahi
{"title":"The use of the normal tissue non-complication probability (NTCP0) in the safety evaluations as a new alternative of assessing the side-effects of the radiation oncology treatments.","authors":"Terman Frometa-Castillo,&nbsp;Anil Pyakuryal,&nbsp;Ganesh Narayanasamy,&nbsp;Amadeo Wals-Zurita,&nbsp;Asghar Mesbahi","doi":"10.1080/09553002.2022.2110299","DOIUrl":"https://doi.org/10.1080/09553002.2022.2110299","url":null,"abstract":"<p><strong>Purpose: </strong>To encourage the use of the NTCP0 for evaluating safety as a new alternative of assessing the S-Es of the radiation oncology treatments; and the use of the 'NTCP0cal' methodology that calculates/estimates NTCP0.</p><p><strong>Method: </strong>Revisions of studies related to use of the NTCP in the evaluations of S-Es. Development of the first version of the Matlab application of our methodology, which provides three options, two of them employ the well-known aspects of a phenomenological model, or the relationship with the TNTCP; where NTCP0 = 100%-TNTCP; and the third option determines NTCP0 from an assumed NTCP discrete probabilistic distribution from the binomial distribution, where one of its parameters is automatically defined from a databased of the Disease locations Vs. Late complications.</p><p><strong>Result: </strong>As result of revisions of some QUANTEC studies, we can say that: (1) The majority of current NTCP models are DVH-based; (2) The risk of toxicity is the way of evaluating the S-Es of the radiation oncology treatments; and (3) The NTCP are used mainly for evaluations of individual or principal complications or Endpoints of the radiation treatments. The 'NTCP0cal' Matlab application developed in this study has three calculation options. Two of the options provide additional graphical information about the distributions.</p><p><strong>Conclusions: </strong>The NTCP0 is a new radiobiological concept, its introduction let to correct some current P + and UTCP formulations, and will allow evaluating S-Es in whatever activity involving ionizing radiation, like radiation treatments; and its phenomenological model function of dose prescribed (D = n*d) will allow calculating values of NTCP0 for a range of dose per fraction (d) in a treatment with a determined number of fractions (n), or for range of <i>n</i> for a constant <i>d</i>. The DVH is irrelevant for this model. For whatever radiation treatment given to a population of similar patients under similar circumstances, the NTCP0 is calculated as ratio of the number of patients without acute/late complications and total of them. When this number is unknown, then NTCP0 can be obtained using the 'NTCP0cal' application.</p>","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":"99 4","pages":"656-662"},"PeriodicalIF":2.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9814373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effect of exposure to ionizing radiation on competitive proliferation and differentiation of hESC. 电离辐射暴露对hESC竞争性增殖和分化的影响。
IF 2.6 4区 医学
International Journal of Radiation Biology Pub Date : 2023-01-01 DOI: 10.1080/09553002.2023.2146231
Irina V Panyutin, Paul G Wakim, Roberto Maass-Moreno, William F Pritchard, Ronald D Neumann, Igor G Panyutin
{"title":"Effect of exposure to ionizing radiation on competitive proliferation and differentiation of hESC.","authors":"Irina V Panyutin,&nbsp;Paul G Wakim,&nbsp;Roberto Maass-Moreno,&nbsp;William F Pritchard,&nbsp;Ronald D Neumann,&nbsp;Igor G Panyutin","doi":"10.1080/09553002.2023.2146231","DOIUrl":"https://doi.org/10.1080/09553002.2023.2146231","url":null,"abstract":"<p><strong>Purpose: </strong>We studied the effects of computed tomography (CT) scan irradiation on proliferation and differentiation of human embryonic stem cells (hESCs). It was reported that hESC is extremely radiosensitive; exposure of hESC in cultures to 1 Gy of ionizing radiation (IR) results in massive apoptosis of the damaged cells and, thus, they are eliminated from the cultures. However, after recovery the surviving cells proliferate and differentiate normally. We hypothesized that IR-exposed hESC may still have growth rate disadvantage when they proliferate or differentiate in the presence of non-irradiated hESC, as has been shown for mouse hematopoietic stem cells in vivo.</p><p><strong>Materials and methods: </strong>To study such competitive proliferation and differentiation, we obtained cells of H9 hESC line that stably express green fluorescent protein (H9GFP). Irradiated with 50 mGy or 500 mGy H9GFP and non-irradiated H9 cells (or vice versa) were mixed and allowed to grow under pluripotency maintaining conditions or under conditions of directed differentiation into neuronal lineage for several passages. The ratio of H9GFP to H9 cells was measured after every passage or approximately every week.</p><p><strong>Results: </strong>We observed competition of H9 and H9GFP cells; we found that the ratio of H9GFP to H9 cells increased with time in both proliferation and differentiation conditions regardless of irradiation, i.e. the H9GFP cells in general grew faster than H9 cells in the mixtures. However, we did not observe any consistent changes in the relative growth rate of irradiated versus non-irradiated hESC.</p><p><strong>Conclusions: </strong>We conclude that population of pluripotent hESC is very resilient; while damaged cells are eliminated from colonies, the surviving cells retain their pluripotency, ability to differentiate, and compete with non-irradiated isogenic cells. These findings are consistent with the results of our previous studies, and with the concept that early in pregnancy omnipotent cells injured by IR can be replaced by non-damaged cells with no impact on embryo development.</p>","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":"99 5","pages":"760-768"},"PeriodicalIF":2.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9814397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of radiation on respiratory disease mortality: analysis of the national registry for radiation workers in United Kingdom. 辐射对呼吸系统疾病死亡率的影响:对英国辐射工作者国家登记的分析。
IF 2.6 4区 医学
International Journal of Radiation Biology Pub Date : 2023-01-01 Epub Date: 2023-03-15 DOI: 10.1080/09553002.2023.2187474
Wei Zhang, Richard G E Haylock, Michael Gillies, Nezahat Hunter, Erica Zhang
{"title":"Effects of radiation on respiratory disease mortality: analysis of the national registry for radiation workers in United Kingdom.","authors":"Wei Zhang,&nbsp;Richard G E Haylock,&nbsp;Michael Gillies,&nbsp;Nezahat Hunter,&nbsp;Erica Zhang","doi":"10.1080/09553002.2023.2187474","DOIUrl":"10.1080/09553002.2023.2187474","url":null,"abstract":"<p><strong>Purpose: </strong>While some evidence of an effect of radiation exposure on respiratory disease at low dose levels has now emerged, there is heterogeneity in the risks between different studies and countries. In this paper, we aim to show the effect of radiation on three different sub-types of respiratory disease mortality through the analysis of the NRRW cohort in UK.</p><p><strong>Materials and methods: </strong>The NRRW cohort consisted of 174,541 radiation workers. Doses to the surface of the body were monitored using individual film badges. Most of the doses are associated with X-rays and gamma rays and to a less extent of beta and neutron particles. The overall mean 10-year lagged lifetime external dose was 23.2 mSv. Some workers were potentially exposed to alpha particles. However, doses from internal emitters were not available for the NRRW cohort. 25% of male workers and 17% of female workers were identified as being monitored for internal exposure. The Poisson regression methods for grouped survival data with a stratified baseline hazard function were used to describe the dependence of the risk on cumulative external radiation dose. The disease was analyzed by the following subgroups: Pneumonia (1066 cases including 17 cases of influenza), COPD and allied disease (1517 cases) and other remaining respiratory diseases (479 cases).</p><p><strong>Results: </strong>There was very little radiation effect on pneumonia mortality, but evidence of a reduction in mortality risk for COPD and allied disease (ERR/Sv= -0.56, 95%CI: -0.94, -0.06; <i>p</i> = .02) and an increase in risk for other respiratory disease mortality (ERR/Sv = 2.30, 95%CI: 0.67, 4.62; <i>p</i> = .01) with increasing cumulative external dose were observed. The effects of radiation were more prominent amongst workers monitored for internal exposure. The reduction in mortality risk of COPD and allied disease per cumulative external dose was statistically significant for the radiation workers monitored for internal exposure (ERR/Sv= -0.59, 95%CI: -0.99, -0.05; <i>p</i> = .017) but not significant among the workers who were not monitored (ERR/Sv= -0.43, 95%CI: -1.20, 0.74; <i>p</i> = .42). A statistically significant increased risk was observed for other respiratory diseases among monitored radiation workers (ERR/Sv = 2.46, 95%CI: 0.69, 5.08; <i>p</i> = .019), but not among unmonitored workers (ERR/Sv = 1.70, 95%CI: -0.82, 5.65; <i>p</i> = .25).</p><p><strong>Conclusion: </strong>The effects of radiation exposure can be different depending on the type of respiratory disease. No effect was seen in pneumonia; a reduction in mortality risk of COPD, and increased mortality risk of other respiratory diseases were observed with cumulative external radiation dose. More studies are needed to verify these findings.</p>","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":" ","pages":"1531-1541"},"PeriodicalIF":2.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9112251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D high resolution clonogenic survival measurement of xrs-5 cells in low-dose region of carbon ion plans. 碳离子计划低剂量区xrs-5细胞三维高分辨率克隆存活测定。
IF 2.6 4区 医学
International Journal of Radiation Biology Pub Date : 2023-01-01 DOI: 10.1080/09553002.2022.2110318
Dea Kartini, Olga Sokol, Chutima Talabnin, Chinorat Kobdaj, Marco Durante, Michael Krämer, Martina Fuss
{"title":"3D high resolution clonogenic survival measurement of xrs-5 cells in low-dose region of carbon ion plans.","authors":"Dea Kartini,&nbsp;Olga Sokol,&nbsp;Chutima Talabnin,&nbsp;Chinorat Kobdaj,&nbsp;Marco Durante,&nbsp;Michael Krämer,&nbsp;Martina Fuss","doi":"10.1080/09553002.2022.2110318","DOIUrl":"https://doi.org/10.1080/09553002.2022.2110318","url":null,"abstract":"<p><strong>Purpose: </strong>In this study, we performed biological verification measurements of cell survival of a <sup>12</sup>C ion irradiation plan employing a high-resolution 3D culture setup. This allowed, in particular, to access the cell inactivation in the low-dose regions close to the target area.</p><p><strong>Materials and methods: </strong>We established the protocol for a 3D culture setup where xrs-5 cells were grown inside a layered matrigel structure in 384-well plates. Their radiosensitivity to conventional and <sup>12</sup>C ion radiation was evaluated by irradiating them either with 250 kV X-rays at GSI or with monoenergetic <sup>12</sup>C beams of 110 MeV/u at MIT, and compared with those of monolayers. A treatment plan for a rectangular target was prepared using the GSI research treatment planning system TRiP98. xrs-5 cells were seeded in the matrigel-based setup and irradiated in dose fall-off regions using active scanning <sup>12</sup>C ion beams. In addition, film dosimetry utilizing radiochromic EBT3 film has been performed to assess the field homogeneity downstream of 384-well V-bottom plates with or without additional agarose coating of the well plate bottom.</p><p><strong>Results: </strong>Dose response curves following X-ray and <sup>12</sup>C ion irradiation had linear shape and showed a significant decrease in survival fraction at even moderate doses. Survival measurements in the low-dose regions of the plan for the extended target showed good agreement to the predicted survival fraction. The irradiated film profiles yielded a flat dose distribution without apparent artifacts or inhomogeneities for well plates both with and without agarose coating, confirming the suitability of the experimental setup.</p><p><strong>Conclusions: </strong>We conclude that the V-bottom 384-well plates in combination with the radiation-sensitive xrs-5 cell line constitute a suitable radiobiological verification tool which can be used especially for low doses. Furthermore, the measured survival of xrs-5 cells show a good agreement with the expected survival in the low-dose out-of-field regions, both laterally and downstream of the target.</p>","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":"99 3","pages":"488-498"},"PeriodicalIF":2.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9445331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Severity scoring systems for radiation-induced GI injury - prioritization for use of GI-ARS medical countermeasures. 辐射诱发胃肠道损伤的严重程度评分系统——GI- ars医疗对策使用的优先次序。
IF 2.6 4区 医学
International Journal of Radiation Biology Pub Date : 2023-01-01 DOI: 10.1080/09553002.2023.2210669
Doreswamy Kenchegowda, David L Bolduc, Lalitha Kurada, William F Blakely
{"title":"Severity scoring systems for radiation-induced GI injury - prioritization for use of GI-ARS medical countermeasures.","authors":"Doreswamy Kenchegowda,&nbsp;David L Bolduc,&nbsp;Lalitha Kurada,&nbsp;William F Blakely","doi":"10.1080/09553002.2023.2210669","DOIUrl":"https://doi.org/10.1080/09553002.2023.2210669","url":null,"abstract":"<p><strong>Purpose: </strong>Severity scoring systems for ionizing radiation-induced gastrointestinal injury have been used in animal radiation models, human studies involving the use of radiation therapy, and human radiation accidents. Various radiation exposure scenarios (i.e. total body irradiation, total abdominal irradiation, etc.) have been used to investigate ionizing radiation-induced gastrointestinal injury. These radiation-induced gastrointestinal severity scoring systems are based on clinical signs and symptoms and gastrointestinal-specific biomarkers (i.e. citrulline, etc.). In addition, the time course for radiation-induced changes in blood citrulline levels were compared across various animal (i.e. mice, minipigs, Rhesus Macaque, etc.) and human model systems.</p><p><strong>Conclusions: </strong>A worksheet tool was developed to prioritize individuals with severe life-threatening gastrointestinal acute radiation syndrome, based on the design of the Exposure and Symptom Tool addressing hematopoietic acute radiation syndrome, to rescue individuals from potential gastrointestinal acute radiation syndrome injury. This tool provides a triage diagnostic approach to assist first responders to assess individuals suspected of showing gastrointestinal acute radiation syndrome severity to guide medical management, hence enhancing medical readiness for managing radiological casualties.</p>","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":"99 7","pages":"1037-1045"},"PeriodicalIF":2.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9783469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Making connections: the scientific impact and mentoring legacy of Dr. John E. Moulder. 建立联系:约翰·e·莫尔德博士的科学影响和指导遗产。
IF 2.1 4区 医学
International Journal of Radiation Biology Pub Date : 2023-01-01 Epub Date: 2023-02-15 DOI: 10.1080/09553002.2023.2176563
Andrea L DiCarlo, David R Cassatt, Carmen I Rios, Merriline M Satyamitra, Yuji Zhang, Trevor G Golden, Lanyn P Taliaferro
{"title":"Making connections: the scientific impact and mentoring legacy of Dr. John E. Moulder.","authors":"Andrea L DiCarlo, David R Cassatt, Carmen I Rios, Merriline M Satyamitra, Yuji Zhang, Trevor G Golden, Lanyn P Taliaferro","doi":"10.1080/09553002.2023.2176563","DOIUrl":"10.1080/09553002.2023.2176563","url":null,"abstract":"<p><strong>Purpose: </strong>The intent of this mini review is to pay homage to Dr. John E. Moulder's long and successful career in radiation science with the Medical College of Wisconsin. This effort will be done from the perspective of his history of U.S. Government funding for research into the biological pathways involved in radiation-induced normal tissue injuries, especially damage to the kidneys and heart, and pharmacological interventions. In addition, the impact of his steady guidance and leadership in the mentoring of junior scientists, and the development of meaningful collaborations with other researchers will be highlighted.</p><p><strong>Conclusion: </strong>Dr. John E. Moulder's contributions to the field of radiation research, through his strong character and reputation, his consistent and dedicated commitment to his colleagues and students, and his significant scientific advances, have been critical to moving the science forward, and will not be forgotten by those who knew him personally or through publications documenting his important work.</p>","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":"99 7","pages":"1009-1015"},"PeriodicalIF":2.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10330047/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9822241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信