International Journal of Molecular and Cellular Medicine最新文献

筛选
英文 中文
LINC01366 and LINC01433 in Glioblastoma Multiforme: A Potential Role at the Intersection of Inflammation and Angiogenesis. 多形性胶质母细胞瘤中的 LINC01366 和 LINC01433:在炎症和血管生成交汇处的潜在作用
IF 1.5
International Journal of Molecular and Cellular Medicine Pub Date : 2024-01-01 DOI: 10.22088/IJMCM.BUMS.13.2.160
Sorush Jafari, Masih Saboori, Sorayya Ghasemi
{"title":"LINC01366 and LINC01433 in Glioblastoma Multiforme: A Potential Role at the Intersection of Inflammation and Angiogenesis.","authors":"Sorush Jafari, Masih Saboori, Sorayya Ghasemi","doi":"10.22088/IJMCM.BUMS.13.2.160","DOIUrl":"10.22088/IJMCM.BUMS.13.2.160","url":null,"abstract":"<p><p>Glioblastoma multiforme (GBM) is an aggressive cancer with a poor prognosis. Inflammation and angiogenesis are important processes in GBM that are interrelated. In this study, bioinformatic investigations were performed to detect common and key genes in the inflammatory and angiogenesis pathways of GBM. Additionally, relevant long non-coding RNAs (lncRNAs) were recognized as important gene regulators. Consequently, real-time PCR and correlation analyses were used to investigate changes in gene and lncRNA expression levels and explain their relationship. RELA emerged as a common key gene in these biological processes. LINC01366 and LINC01433 were identified as putative RELA regulators in different metabolic pathways using computational assays. According to our findings, the expression levels of RELA, LINC01366 and LINC01433 were found to be significantly upregulated in GBM samples. Correlational studies revealed a significant positive relationship of gene expressions between LINC01366 and LINC01433, indicating that they may have a coordinated effect on GBM biology. Nevertheless, there was no significant correlation between these lncRNAs and RELA. The current study highlights the high expression of LINC01366 and LINC01433 in GBM and emphasizes the importance of studying lncRNAs as putative regulators in the pathophysiology of GBM. Further research is needed to clarify their specific functions, in particular the associated inflammatory and angiogenesis pathways.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"13 2","pages":"160-170"},"PeriodicalIF":1.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344566/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SiRNA-mediated Silencing of the RPS19 Gene Induces Apoptosis and Inhibits Cell Cycle Progression in Chronic Myeloid Leukemia Cells. sirna介导的RPS19基因沉默诱导慢性髓系白血病细胞凋亡并抑制细胞周期进展
IF 1.5
International Journal of Molecular and Cellular Medicine Pub Date : 2024-01-01 DOI: 10.22088/IJMCM.BUMS.13.4.436
Javad Roodgar-Saffari, Vajiheh Zarrinpour, Mohammad Mahdi Forghanifard
{"title":"SiRNA-mediated Silencing of the RPS19 Gene Induces Apoptosis and Inhibits Cell Cycle Progression in Chronic Myeloid Leukemia Cells.","authors":"Javad Roodgar-Saffari, Vajiheh Zarrinpour, Mohammad Mahdi Forghanifard","doi":"10.22088/IJMCM.BUMS.13.4.436","DOIUrl":"10.22088/IJMCM.BUMS.13.4.436","url":null,"abstract":"<p><p>This research delves into the therapeutic implications of utilizing small interfering RNA (siRNA) to target the ribosomal protein S19 (RPS19) gene in chronic myeloid leukemia (CML) using the K562 cell line model. The primary objective was to investigate how gene silencing affects apoptosis promotion and cell cycle arrest. The study employed bioinformatics tools and databases to explore the interactions involving RPS19 and neighboring proteins. Subsequently, siRNA-mediated gene silencing was utilized to suppress RPS19 expression in K-562 cells, with assessments conducted on cell cycle progression and apoptosis through flow cytometry analysis. Furthermore, real-time PCR was employed to evaluate the expression levels of RPS19, along with the closely associated RPS16 and RPS18 genes. Silencing the RPS19 gene in siRNA-transfected K-562 cells led to an increase in apoptotic cells by over 20%, with a significant accumulation in the sub-G1 and G1 phases. Additionally, the knockdown of RPS19 resulted in a 75% decrease in RPS16 expression and a 50% decrease in RPS18 expression. These results demonstrate the therapeutic potential of targeting RPS19 in CML cells, suggesting a promising approach for precise treatment strategies in leukemia and potentially other types of cancer.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"13 4","pages":"436-447"},"PeriodicalIF":1.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786124/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143079779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene Expression of Glycolysis Enzymes in MCF-7 Breast Cancer Cells Exposed to Warburg Effect and Hypoxia. 受沃伯格效应和缺氧影响的 MCF-7 乳腺癌细胞中糖酵解酶的基因表达。
IF 1.5
International Journal of Molecular and Cellular Medicine Pub Date : 2024-01-01 DOI: 10.22088/IJMCM.BUMS.13.1.29
Irem Bayar, Gamze Sevri Ekren Asici, Ayşegül Bildik, Funda Kiral
{"title":"Gene Expression of Glycolysis Enzymes in MCF-7 Breast Cancer Cells Exposed to Warburg Effect and Hypoxia.","authors":"Irem Bayar, Gamze Sevri Ekren Asici, Ayşegül Bildik, Funda Kiral","doi":"10.22088/IJMCM.BUMS.13.1.29","DOIUrl":"10.22088/IJMCM.BUMS.13.1.29","url":null,"abstract":"<p><p>Hypoxia can cause significant changes in the glucose metabolism of cancer cells that prefer aerobic glycolysis for energy production instead of the conventional oxidative phosphorylation mechanism. In this study, breast cancer cells (MCF-7) were exposed to glucose (0-5.5-15-55 mM), during specific incubation periods (3, 6, 12, or 24 hours) under normoxic and hypoxic conditions. The expression levels of hypoxia-inducible factor-1α (HIF-1α), glucose transporter-1 (GLUT-1), and glycolytic enzymes at varying glucose concentrations in cells were investigated in the different oxygen environments. It was determined that glycolytic enzymes [Hexokinase 2 (HK2), Pyruvate Kinase M2 (PKM2), Glucose-6-phosphate dehydrogenase (G6PD), Lactate Dehydrogenase A (LDHA), Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH), and Phosphofructokinase M (PFKM)] increased at the transcriptional level, especially in the first hours. This increase indicates that major metabolic reprogramming in response to hypoxia probably occurs over a short period of time. The increase in G6PD gene expression under high glucose and hypoxia conditions suggests that the pentose phosphate pathway (PPP) is used by cancer cells to synthesize necessary precursors for the cell. The results of the study showed that there is a significant interaction between hypoxia and glycolytic metabolism in cancer cells. It is thought that metabolic pathways activated by hypoxia and related genes located in these pathways will contribute to the literature by offering the potential to be target molecules for therapeutic purposes.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"13 1","pages":"29-45"},"PeriodicalIF":1.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329934/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141999876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasma TNF-α Elevation in Biologic Naive Rheumatoid Arthritis Patients Belonging to a Population with New Mutations in TLR4 and CYP51A1 genes without Association with Disease-Related Antibodies Levels. 属于 TLR4 和 CYP51A1 基因新突变人群的类风湿关节炎患者血浆 TNF-α 升高与疾病相关抗体水平无关。
IF 1.5
International Journal of Molecular and Cellular Medicine Pub Date : 2024-01-01 DOI: 10.22088/IJMCM.BUMS.13.2.171
Ezatollah Mosavi, Mojgan Bandehpour, Amrollah Mostafazadeh, Behnaz YousefGhahari, Fateme Majidi, Hakimeh Zali, Bahram Kazemi
{"title":"Plasma TNF-α Elevation in Biologic Naive Rheumatoid Arthritis Patients Belonging to a Population with New Mutations in TLR4 and CYP51A1 genes without Association with Disease-Related Antibodies Levels.","authors":"Ezatollah Mosavi, Mojgan Bandehpour, Amrollah Mostafazadeh, Behnaz YousefGhahari, Fateme Majidi, Hakimeh Zali, Bahram Kazemi","doi":"10.22088/IJMCM.BUMS.13.2.171","DOIUrl":"10.22088/IJMCM.BUMS.13.2.171","url":null,"abstract":"<p><p>In a system biology-based study, we previously reported that IL-6 and IL6R -specific m-RNA levels were elevated in leukocytes of patients with Rheumatoid arthritis (RA). Here, the association of toll-like receptor4 (TLR4) rs 141534085 and cytochrome P450 family 51 subfamily A member 1(CYP51A1) rs6 with tumor necrosis factor-α (TNF- α), rheumatoid factor (RF)- and Anti- cyclic citrullinated peptide (anti-CCP) antibody -positivity was investigated in almost the same subjects. Forty-six patients and 48 normal subjects were recruited in this study. The blood leucocytes TLR4 rs 141534085 and CYP51A1 rs6 -comprising DNA sequences were amplified by using tetra-primer amplification refractory mutation system polymerase chain reaction (T-ARMS-PCR) technique and the PCR products were checked by Sanger DNA sequencing method. ELISA method was used to determine plasma levels of TNF- α, anti-CCP antibody and RF positivity of plasma was evaluated through a latex agglutination test. The TNF- α level was significantly higher in the patient group than control subjects (p= 0.001). Moreover, we were not able to find any correlation between TNF-α levels and RF as well as anti-CCP antibodies when we used the K<sup>2</sup>/ Fisher's exact test and Pearson test respectively. Our DNA sequencing data revealed the following new mutations in TLR4 rs141534085 comprising regions: A>T in position 1050, T>A in position 1052, and C>A in position 1054; and for CYP51A1 rs6 encompassing region, the new mutations were; G>A in position 21680, the T nucleotide was inserted in position 21762 and the G nucleotide was inserted in position 21763, G>T in position 21764. The data of this study showed that both TLR4 rs141534085 and CYP51A1 rs6 related DNA regions should be considered as hotspot areas in RA pathogenicity. Moreover, these data indicated that, TNF- α did not alter the production of anti-CCP and RF pathogenic antibodies in patients with long-term RA.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"13 2","pages":"171-185"},"PeriodicalIF":1.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344565/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biosynthesis of Copper Oxide-Silver Nanoparticles from Ephedra Intermedia Extract and Study of Anticancer Effects in HepG2 Cell Line: Apoptosis-Related Genes Analysis and Nitric Oxide Level Investigations. 麻黄提取物氧化铜-银纳米粒子的生物合成及其在 HepG2 细胞系中的抗癌作用研究:细胞凋亡相关基因分析和一氧化氮水平研究。
IF 1.5
International Journal of Molecular and Cellular Medicine Pub Date : 2024-01-01 DOI: 10.22088/IJMCM.BUMS.13.3.303
Nazanin Naderi, Azadeh Mohammadgholi, Nastaran Asghari Moghaddam
{"title":"Biosynthesis of Copper Oxide-Silver Nanoparticles from Ephedra Intermedia Extract and Study of Anticancer Effects in HepG2 Cell Line: Apoptosis-Related Genes Analysis and Nitric Oxide Level Investigations.","authors":"Nazanin Naderi, Azadeh Mohammadgholi, Nastaran Asghari Moghaddam","doi":"10.22088/IJMCM.BUMS.13.3.303","DOIUrl":"10.22088/IJMCM.BUMS.13.3.303","url":null,"abstract":"<p><p>Liver cancer treatment faces significant obstacles such as resistance, recurrence, metastasis, and toxicity to healthy cells. Biometallic nanoparticles (NPs) have emerged as a promising approach to address these challenges. In this study, copper oxide-silver (Ag-doped CuO) NPs were prepared using a reduction method with <i>Ephedra</i> intermedia extract. The physicochemical properties of the NPs were evaluated using various techniques such as Field emission scanning electron microscopy (FESEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). Additionally, this study has evaluated nitric oxide levels (NO), reactive oxygen species (ROS) production, <i>Bax</i>, <i>Bcl2</i>, <i>P53</i>, and <i>Caspase3</i> genes expression, as well as cell viability within 24 hours in liver cancer cell line HepG2. FESEM and TEM imaging confirmed the nanostructural nature of the synthesized particles with sizes ranging from 31.27 to 88.98 nanometers. XRD analysis confirmed the crystal structure of the NPs. Comparative analysis showed that the IC<sub>50</sub> values of the Ag-doped CuO NPs were significantly lower than that of the plant extracts. Molecular studies showed significantly increased expression of <i>Bax</i>, <i>Caspase3</i>, and <i>P53</i> genes, inducing apoptosis in cancer cells, and downregulation of <i>Bcl2</i> as a pro-metastasis gene. Additionally, the presence of Ag-doped CuO NPs significantly increased NO activity enzyme and ROS generation compared to the plant extract. The biosynthesized Ag-doped CuO NPs demonstrated the ability to induce apoptosis, increase ROS production, and enhance NO enzyme activity in HepG2 cancer cells, suggesting their potential as a therapeutic agent for liver cancer.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"13 3","pages":"303-324"},"PeriodicalIF":1.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530949/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lactobacillus Plantarum and its Derived Bacteriocin Exhibits Potent Antitumor Activity against Esophageal Cancer Cells. 植物乳杆菌及其衍生细菌素对食道癌细胞具有强大的抗肿瘤活性
IF 1.5
International Journal of Molecular and Cellular Medicine Pub Date : 2024-01-01 DOI: 10.22088/IJMCM.BUMS.13.3.286
Salam Husam Sabri, Saeed Esmaeili Mahani, Ahmed Majeed Al-Shammari, Khalid Jaber Kadhum Luti, Mehdi Abbas Nejad
{"title":"Lactobacillus Plantarum and its Derived Bacteriocin Exhibits Potent Antitumor Activity against Esophageal Cancer Cells.","authors":"Salam Husam Sabri, Saeed Esmaeili Mahani, Ahmed Majeed Al-Shammari, Khalid Jaber Kadhum Luti, Mehdi Abbas Nejad","doi":"10.22088/IJMCM.BUMS.13.3.286","DOIUrl":"10.22088/IJMCM.BUMS.13.3.286","url":null,"abstract":"<p><p>Esophageal cancer presents a challenge in gastroenterology and traditional chemotherapy and radiation therapy have less therapeutic activity with severe side effects. Thus, there is need for effective and safer alternatives. Probiotics, particularly <i>Lactobacillus plantarum</i> (<i>L</i>. <i>plantarum</i>) and its bacteriocins, might prevent or treat esophageal tumors. We aimed to investigate the use of <i>L. plantarum</i> and its bacteriocin as esophageal cancer therapy. First, we obtained 100 isolates of Lactobacillus spp. from dairy product samples. They screened for bacteriocin production and identified by PCR and gel electrophoresis for 16S ribosomal RNA gene. Bacteriocin was partially purified and tested against two different pathogens. Both L. plantarum and its bacteriocin were examined for cytotoxicity in vitro against esophageal cancer cell line (SK-GT4) and normal rat embryo fibroblast (REF) cells by MTT assay. Apoptosis was determined using an acridine orange /propidium iodide assay. The results showed that the isolate gives a high bacteriocin production about (2000AU/ml). In addition to antimicrobial activity, there was significant anticancer activity. <i>L</i>. <i>plantarum</i> had an IC<sub>50</sub> of 51.01 CFU/ml and bacteriocin IC<sub>50</sub> of 281.9 AU/ml against cancer cells. Both showed no cytotoxicity towards normal REF cells. Furthermore, there was a significant increase in apoptosis induction and in caspase-3 activity in cancer cells treated with L. plantarum and bacteriocin compared to untreated cells. In conclusion, <i>L. plantarum</i> and its bacteriocin show potent killing effect against esophageal cancer cells with no effect against normal cells indicating safety and selectivity with activation of apoptosis via caspase-3 induction suggesting potential clinical advantage.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"13 3","pages":"286-302"},"PeriodicalIF":1.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530945/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting Survival in Glioblastoma Using Gene Expression Databases: A Neural Network Analysis. 利用基因表达数据库预测胶质母细胞瘤的生存期:神经网络分析
IF 1.5
International Journal of Molecular and Cellular Medicine Pub Date : 2024-01-01 DOI: 10.22088/IJMCM.BUMS.13.1.79
Parisa Azimi, Taravat Yazdanian, Amirhosein Zohrevand, Abolhassan Ahmadiani
{"title":"Predicting Survival in Glioblastoma Using Gene Expression Databases: A Neural Network Analysis.","authors":"Parisa Azimi, Taravat Yazdanian, Amirhosein Zohrevand, Abolhassan Ahmadiani","doi":"10.22088/IJMCM.BUMS.13.1.79","DOIUrl":"10.22088/IJMCM.BUMS.13.1.79","url":null,"abstract":"<p><p>Glioblastoma (GBM) is the most aggressive and lethal brain tumor. Artificial neural networks (ANNs) have the potential to make accurate predictions and improve decision making. The aim of this study was to create an ANN model to predict 15-month survival in GBM patients according to gene expression databases. Genomic data of GBM were downloaded from the CGGA, TCGA, MYO, and CPTAC. Logistic regression (LR) and ANN model were used. Age, gender, IDH wild-type/mutant and the 31 most important genes from our previous study, were determined as input factors for the established ANN model. 15-month survival time was used to evaluate the results. The normalized importance scores of each covariate were calculated using the selected ANN model. The area under a receiver operating characteristic (ROC) curve (AUC), Hosmer-Lemeshow (H-L) statistic and accuracy of prediction were measured to evaluate the two models. SPSS 26 was utilized. A total of 551 patients (61% male, mean age 55.5 ± 13.3 years) patients were divided into training, testing, and validation datasets of 441, 55 and 55 patients, respectively. The main candidate genes found were: FN1, ICAM1, MYD88, IL10, and CCL2 with the ANN model; and MMP9, MYD88, and CDK4 with LR model. The AUCs were 0.71 for the LR and 0.81 for the ANN analysis. Compared to the LR model, the ANN model showed better results: Accuracy rate, 83.3 %; H-L statistic, 6.5 %; and AUC, 0.81 % of patients. The findings show that ANNs can accurately predict the 15-month survival in GBM patients and contribute to precise medical treatment.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"13 1","pages":"79-90"},"PeriodicalIF":1.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329931/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141999878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ferroptosis Plays a Pivotal Role in Activating and Modulating Specific Intracellular Signaling Pathways Integrated into the Therapeutic Management of Colorectal Cancer. 铁下垂在激活和调节特定的细胞内信号通路中起着关键作用,这些信号通路整合到结直肠癌的治疗管理中。
IF 1.5
International Journal of Molecular and Cellular Medicine Pub Date : 2024-01-01 DOI: 10.22088/IJMCM.BUMS.13.4.374
Marzieh Monemi, Hanan Hassan Ahmed, Radhwan Abdul Kareem, Waam Mohammed Taher, Mariem Alwan, Mahmood Jasem Jawad, Atheer Khdyair Hamad, Samaneh Moradi
{"title":"Ferroptosis Plays a Pivotal Role in Activating and Modulating Specific Intracellular Signaling Pathways Integrated into the Therapeutic Management of Colorectal Cancer.","authors":"Marzieh Monemi, Hanan Hassan Ahmed, Radhwan Abdul Kareem, Waam Mohammed Taher, Mariem Alwan, Mahmood Jasem Jawad, Atheer Khdyair Hamad, Samaneh Moradi","doi":"10.22088/IJMCM.BUMS.13.4.374","DOIUrl":"10.22088/IJMCM.BUMS.13.4.374","url":null,"abstract":"<p><p>It is expected that the amount of recently diagnosed colon cancer cases will increase to around 3.2 million yearly until 2040. Although early diagnostic procedures and management approaches have been improved, colorectal cancer (CRC) treatment remains challenging. There is an urgent need to discover new therapeutic agents to enhance therapeutic strategies. Ferroptosis is distinguished as a mode of regulated cell death considered by iron-dependent lipid peroxidation. Contemporary investigations suggest that induction of ferroptosis in CRC can effectively target neoplastic cells that are resistant to alternative forms of cell death. This review has summarized recent scientific work on the implications of ferroptosis in CRC treatment and highlights its underlying molecular and biological mechanisms. While investigating its therapeutic potential, it shows the importance of diverse modulators of ferroptosis, including the 7-membered solute carrier family 11 or xCT (SLC7A11), reactive oxygen species (ROS), glutathione (GSH), and iron in the context of CRC. Recent research has identified specific pathways and compounds that can induce ferroptosis in CRC, such as apatinib and elesclimol, which are involved in pivotal signaling cascades. Attenuation of proteins such as splicing factor, arginine/serine 9 (SFRS9), and Tp53-induced glycolysis and apoptosis regulator (TIGAR) may increase the sensitivity of CRC cells to ferroptosis, thus suggesting promising therapeutic avenues. Compounds including IMCA and β-elemene have shown efficacy in inducing ferroptosis while minimizing toxicity to normal tissues, thereby demonstrating their potential as therapeutic agents for CRC. Participating ferroptosis stimulator drugs with current treatment regimens, such as cetuximab and aspirin, may offer better treatment outcomes for CRC patients, especially those presenting resistance to conventional therapies.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"13 4","pages":"374-386"},"PeriodicalIF":1.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786127/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143079342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential Otubain1 Inhibitor, an Approach for a Treatment against Breast Cancer. 潜在的Otubain1抑制剂,一种治疗乳腺癌的方法。
IF 1.5
International Journal of Molecular and Cellular Medicine Pub Date : 2024-01-01 DOI: 10.22088/IJMCM.BUMS.13.4.350
Andrea Muñoz-Ayala, Victor G García-González, Angel Pulido-Capiz, Brenda Chimal-Vega, Ruth A García-Villarreal, José L Vique-Sánchez
{"title":"Potential Otubain1 Inhibitor, an Approach for a Treatment against Breast Cancer.","authors":"Andrea Muñoz-Ayala, Victor G García-González, Angel Pulido-Capiz, Brenda Chimal-Vega, Ruth A García-Villarreal, José L Vique-Sánchez","doi":"10.22088/IJMCM.BUMS.13.4.350","DOIUrl":"10.22088/IJMCM.BUMS.13.4.350","url":null,"abstract":"<p><p>The develop of new anticancer drug continues worldwide and one of the new therapeutic targets to reach it is Otubain 1 (OTUB1), since OTUB1 has functions related to prognosis in a variety of tumors and is strongly related to tumor proliferation, migration, and apoptosis by their functions on deubiquitinating. This study uses OTUB1´s active site to develop a specific pharmacological treatment to regulate the OTUB1 functions. The aim of this research was to evaluate the effects of ten compounds (OT1 - OT10), that previously were selected by molecular docking to develop a new anticancer drug to decrease the OTUB1 functions in the cancer processes. We evaluated the cytotoxic effect of OT1 - OT10 compounds on MCF-7, BT474 and MDA-MB 231 cells by MTT assay, and we determined characteristics of apoptosis by western blot analysis. Then, the best compound (OT5) was analyzed by molecular docking, molecular dynamics and theoretical toxicity for describing the interactions of OT5 compound with the OTUB1´s active site. We proposed that the OT5 compound has a high probability to be selective against OTUB1, with an apoptosis (regulating caspase-8) and cytotoxic effect on some cancer lines; IC50 for MCF-7: 97 µM and MDA-MB 231:147 µM, as well as we described that this compound could have specific interactions in the catalytic domain of OTUB1, modifying this protein's activity, decreasing the OTUB1 functions, and probably safe for humans. These results show the high potential of this compound for promoting the development of this compound as a new drug against cancer.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"13 4","pages":"350-360"},"PeriodicalIF":1.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786125/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143079776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increased Expression of ITGB 3 in CLL Patient leukemia Cells by Exposure to Cold Physical Plasma and Plasma-treated Medium. 暴露于冷物理血浆和血浆处理过的培养基可增加 CLL 患者白血病细胞中 ITGB 3 的表达。
IF 1.5
International Journal of Molecular and Cellular Medicine Pub Date : 2024-01-01 DOI: 10.22088/IJMCM.BUMS.13.3.248
Monireh Golpour, Farshad Sohbatzadeh, Mina Alimohammadi, Zahra Yazdani, Sadegh Fattahi, Ehsan Zaboli, Alireza Rafiei, Sander Bekeschus
{"title":"Increased Expression of ITGB 3 in CLL Patient leukemia Cells by Exposure to Cold Physical Plasma and Plasma-treated Medium.","authors":"Monireh Golpour, Farshad Sohbatzadeh, Mina Alimohammadi, Zahra Yazdani, Sadegh Fattahi, Ehsan Zaboli, Alireza Rafiei, Sander Bekeschus","doi":"10.22088/IJMCM.BUMS.13.3.248","DOIUrl":"10.22088/IJMCM.BUMS.13.3.248","url":null,"abstract":"<p><p>Chronic lymphocytic leukemia (CLL) is the most prevalent hematological cancer, with various medical interventions. In the recent decade, cold physical plasma has become an interesting agent for future cancer therapy. The goal of this study was to see whether cold physical plasma or cold physical plasma-treated liquid (PTL) affected integrin beta 3 (ITGB3) expression, which is hypothesized to mediate an interaction between cancer stem cells and the bone marrow microenvironment, in CLL patients' blood cells. The metabolic activity, cell death pattern, lipid oxidation and ITGB3 gene expression of these treatments was evaluated. Both direct cold physical plasma and PTL exposure enhanced lipid peroxidation in cells of CLL patients, but to a lesser extent in healthy participants. Furthermore, following 48h of cold physical plasma or PTL exposure, the metabolic activity of leukocytes was preferentially reduced in CLL patient leukocytes. In addition, cold physical plasma and PTL treatment elevated ITGB3 mRNA expression in CLL patients' leukocytes compared to untreated and healthy controls. Collectively, our study suggests selective effects of direct cold physical plasma and PTL exposure on blood leukocytes from leukemia patients, but further and more detailed studies are needed to provide additional rationales for such treatment options as future therapy.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"13 3","pages":"248-258"},"PeriodicalIF":1.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530951/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信