International Journal of Molecular and Cellular Medicine最新文献

筛选
英文 中文
Knockdown of SOX12 Expression Induced Apoptotic Factors is Associated with TWIST1 and CTNNB1 Expression in Human Acute Myeloid Leukemia Cells. SOX12表达下调诱导凋亡因子与人急性髓系白血病细胞TWIST1和CTNNB1表达相关
International Journal of Molecular and Cellular Medicine Pub Date : 2021-01-01 Epub Date: 2022-06-06 DOI: 10.22088/IJMCM.BUMS.10.4.249
Arezou Dabiri, Mohammadreza Sharifi, Akram Sarmadi
{"title":"Knockdown of SOX12 Expression Induced Apoptotic Factors is Associated with TWIST1 and CTNNB1 Expression in Human Acute Myeloid Leukemia Cells.","authors":"Arezou Dabiri,&nbsp;Mohammadreza Sharifi,&nbsp;Akram Sarmadi","doi":"10.22088/IJMCM.BUMS.10.4.249","DOIUrl":"https://doi.org/10.22088/IJMCM.BUMS.10.4.249","url":null,"abstract":"<p><p>Recent improvements in molecular treatment and gene therapy led to discovering novel cancer remedies. Antisense LNA GapmeRs is a state-of-the-art molecular research field for diagnosing and treating various cancer types. Acute myeloid leukemia (AML) is a heterogeneous hematopoietic malignancy defined by the rapid accumulation and malignant proliferation of immature myeloid progenitors. SOX12 is a new potential target for acute myeloid leukemia. In this study, SOX12 was blocked by antisense LNA GapmeRs (ALG) in human AML cell lines (KG1 and M07e). Cells were transfected with Gapmer anti-<i>SOX12</i> at 24, 48, and 72 h post-transfection. Transfection efficiency was assessed by a fluorescent microscope. Furthermore, evaluation of SOX12, TWIST1, CTNNB1, CASP3, and CASP9 expression was performed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Cell viability was determined by MTT assay. SOX12 expression was decreased remarkably in the ALG group. Moreover, SOX12 knockdown was associated with a decrease in <i>TWIST1</i> and <i>CTNNB1</i> expression. Besides, downregulation of SOX12 in both cell lines could induce apoptosis, probably through upregulation of CASP3 and CASP9. The findings reveal that SOX12 knockdown could be a new target for reducing AML cells proliferation through antisense therapy approach.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"10 4","pages":"249-258"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e4/c8/ijmcm-10-249.PMC9273156.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40536018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Knockdown of c-MYC Controls the Proliferation of Oral Squamous Cell Carcinoma Cells in vitro via Dynamic Regulation of Key Apoptotic Marker Genes. c-MYC敲低通过动态调控关键凋亡标记基因控制口腔鳞状细胞癌细胞的增殖
International Journal of Molecular and Cellular Medicine Pub Date : 2021-01-01 Epub Date: 2021-05-22 DOI: 10.22088/IJMCM.BUMS.10.1.45
Hussein Sabit, Huseyin Tombuloglu, Emre Cevik, Shaimaa Abdel-Ghany, Engy El-Zawahri, Amr El-Sawy, Sevim Isik, Ebtesam Al-Suhaimi
{"title":"Knockdown of c-MYC Controls the Proliferation of Oral Squamous Cell Carcinoma Cells in vitro via Dynamic Regulation of Key Apoptotic Marker Genes.","authors":"Hussein Sabit,&nbsp;Huseyin Tombuloglu,&nbsp;Emre Cevik,&nbsp;Shaimaa Abdel-Ghany,&nbsp;Engy El-Zawahri,&nbsp;Amr El-Sawy,&nbsp;Sevim Isik,&nbsp;Ebtesam Al-Suhaimi","doi":"10.22088/IJMCM.BUMS.10.1.45","DOIUrl":"https://doi.org/10.22088/IJMCM.BUMS.10.1.45","url":null,"abstract":"<p><p>Oral squamous cell carcinoma (OSCC) is the most common malignant epithelial cancer occurring in the oral cavity, where it accounts for nearly 90% of all oral cavity neoplasms. The c-MYC transcription factor plays an important role in the control of programmed cell death, normal-to-malignant cellular transformation, and progression of the cell cycle. However, the role of <i>c-MYC</i> in controlling the proliferation of OSCC cells is not well known. In this study, <i>c-MYC</i> gene was silenced in OSCC cells (ORL-136T), and molecular and cellular responses were screened. To identify the pathway through which cell death occurred, cytotoxicity, colony formation, western blotting, caspase-3, and RT-qPCR analyzes were performed. Results indicated that knockdown of <i>c-MYC</i> has resulted in a significant decrease in the cell viability and c-MYC protein synthesis. Furthermore, caspase-3 was shown to be upregulated leading to apoptosis <i>via</i> the intrinsic pathway. In response to <i>c-MYC</i> knockdown, eight cell proliferation-associated genes showed variable expression profiles: <i>c-MYC</i> (-21.2), <i>p21</i> (-2.5), <i>CCNA1</i>(1.8), <i>BCL</i>2 (-1.4), <i>p53</i>(-3.7), <i>BAX</i>(1.1), and <i>CYCS</i> (19.3)<i>. p27</i> expression was dramatically decreased in <i>c-MYC</i>-silenced cells in comparison with control, and this might indicate that the relative absence of <i>c-MYC</i> triggered intrinsic apoptosis in OSCC cells <i>via p27</i> and <i>CYCS</i>.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"10 1","pages":"45-55"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8256829/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39189219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
The Biological Significance of Long noncoding RNAs Dysregulation and their Mechanism of Regulating Signaling Pathways in Cervical Cancer. 长链非编码rna在宫颈癌中的生物学意义及其调控信号通路的机制。
International Journal of Molecular and Cellular Medicine Pub Date : 2021-01-01 Epub Date: 2021-09-01 DOI: 10.22088/IJMCM.BUMS.10.2.75
Maryame Lamsisi, Lahcen Wakrim, Amal Bouziyane, Mustapha Benhessou, Mounia Oudghiri, Abdelilah Laraqui, Mohamed Elkarroumi, Mohammed Ennachit, Mohammed El Mzibri, Moulay Mustapha Ennaji
{"title":"The Biological Significance of Long noncoding RNAs Dysregulation and their Mechanism of Regulating Signaling Pathways in Cervical Cancer.","authors":"Maryame Lamsisi,&nbsp;Lahcen Wakrim,&nbsp;Amal Bouziyane,&nbsp;Mustapha Benhessou,&nbsp;Mounia Oudghiri,&nbsp;Abdelilah Laraqui,&nbsp;Mohamed Elkarroumi,&nbsp;Mohammed Ennachit,&nbsp;Mohammed El Mzibri,&nbsp;Moulay Mustapha Ennaji","doi":"10.22088/IJMCM.BUMS.10.2.75","DOIUrl":"10.22088/IJMCM.BUMS.10.2.75","url":null,"abstract":"<p><p>Despite the remarkable decrease in cervical cancer incidence due to the availability of the HPV vaccine and implementation of screening programs for early detection in developed countries, this cancer remains a major health problem globally, especially in developing countries where most of the cases and mortality occur. Therefore, more understanding of molecular mechanisms of cervical cancer development might lead to the discovery of more effective diagnosis and treatment options. Research on long noncoding RNAs (lncRNAs) demonstrates the important roles of these molecules in many physiological processes and diseases, especially cancer. In the present review, we discussed the significance of lncRNAs altered expression in cervical cancer, highlighting their roles in regulating highly conserved signaling pathways, such as mitogen-activated protein kinase (MAPK), Wnt/β-catenin, Notch, and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathways and their association with the progression of cervical cancer in order to bring more insight and understanding of this disease and their potential implications in cancer diagnosis and therapy.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"10 2","pages":"75-101"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496250/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39561003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Mesenchymal Stem Cells cause Telomere Length Reduction of Molt-4 Cells via Caspase-3, BAD and P53 Apoptotic Pathway. 间充质干细胞通过Caspase-3、BAD和P53凋亡通路导致Molt-4细胞端粒长度减少。
International Journal of Molecular and Cellular Medicine Pub Date : 2021-01-01 Epub Date: 2021-09-01 DOI: 10.22088/IJMCM.BUMS.10.2.113
Hamid Reza Heidari, Ezzatollah Fathi, Soheila Montazersaheb, Ayoub Mamandi, Raheleh Farahzadi, Soran Zalavi, Hojjatollah Nozad Charoudeh
{"title":"Mesenchymal Stem Cells cause Telomere Length Reduction of Molt-4 Cells via Caspase-3, BAD and P53 Apoptotic Pathway.","authors":"Hamid Reza Heidari,&nbsp;Ezzatollah Fathi,&nbsp;Soheila Montazersaheb,&nbsp;Ayoub Mamandi,&nbsp;Raheleh Farahzadi,&nbsp;Soran Zalavi,&nbsp;Hojjatollah Nozad Charoudeh","doi":"10.22088/IJMCM.BUMS.10.2.113","DOIUrl":"https://doi.org/10.22088/IJMCM.BUMS.10.2.113","url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs) as undifferentiated cells are specially considered in cell-based cancer therapy due to unique features such as multi-potency, pluripotency, and self-renewal. A multitude of cytokines secreted from MSCs are known to give such multifunctional attributes, but details of their role are yet to be unknown. In the present study, MSCs were cultured, characterized and co-cultured with Molt-4 cells as acute lymphoblastic leukemia cell line in a trans-well plate. Then, cultured Molt-4 alone and Molt-4 co-cultured with MSCs (10:1) were collected on day 7 and subjected to real time-PCR and Western blotting for gene and protein expression assessment, respectively. Ki-67/caspase-3 as well as telomere length were investigated by flow cytometry and real time-PCR, respectively. The results showed that MSCs caused significant decrease in telomere length as well as <i>hTERT</i> gene expression of Molt-4 cells. Also, gene and protein expression of BAD and P53 were significantly increased. Furthermore, the flow cytometry analysis indicated the decrease and increase of the Ki-67 and caspaspase-3 expression, respectively. It was concluded that MSCs co-cultured with Molt-4 cells could be involved in the promotion of Molt-4 cell apoptosis via caspase-3, BAD, and P53 expression. In addition, the decrease of telomere length is another effect of MSCs on Molt-4 leukemic cells.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"10 2","pages":"113-122"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496249/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39561004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Role of mTOR Complex 1 Signaling Pathway in the Pathogenesis of Diabetes Complications; A Mini Review. mTOR复合物1信号通路在糖尿病并发症发病中的作用一个小评论。
International Journal of Molecular and Cellular Medicine Pub Date : 2021-01-01 Epub Date: 2022-01-10 DOI: 10.22088/IJMCM.BUMS.10.3.181
Amir Yarahmadi, Negar Azarpira, Zohreh Mostafavi-Pour
{"title":"Role of mTOR Complex 1 Signaling Pathway in the Pathogenesis of Diabetes Complications; A Mini Review.","authors":"Amir Yarahmadi,&nbsp;Negar Azarpira,&nbsp;Zohreh Mostafavi-Pour","doi":"10.22088/IJMCM.BUMS.10.3.181","DOIUrl":"https://doi.org/10.22088/IJMCM.BUMS.10.3.181","url":null,"abstract":"<p><p>The mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine-protein kinase that senses and combines various environmental signals to regulate the growth and homeostasis of human cells. This signaling pathway synchronizes many critical cellular processes and is involved in an increasing number of pathological conditions such as diabetes, cancer, obesity, and metabolic syndrome. Here, we review different complications of diabetes that are associated with mTOR complex 1 imbalance. We further discuss pharmacological approaches to treat diabetes complications linked to mTOR deregulation.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"10 3","pages":"181-189"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8800458/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39933691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Altered mRNA Expression of Fucosyltransferases and Fucosidase Predicts Prognosis in Human Oral Carcinoma. 聚焦酰基转移酶和聚焦酶mRNA表达改变预测人类口腔癌预后。
International Journal of Molecular and Cellular Medicine Pub Date : 2021-01-01 Epub Date: 2021-09-01 DOI: 10.22088/IJMCM.BUMS.10.2.123
Kruti Mehta, Kinjal Patel, Shashank Pandya, Prabhudas Patel
{"title":"Altered mRNA Expression of Fucosyltransferases and Fucosidase Predicts Prognosis in Human Oral Carcinoma.","authors":"Kruti Mehta,&nbsp;Kinjal Patel,&nbsp;Shashank Pandya,&nbsp;Prabhudas Patel","doi":"10.22088/IJMCM.BUMS.10.2.123","DOIUrl":"https://doi.org/10.22088/IJMCM.BUMS.10.2.123","url":null,"abstract":"<p><p>Aberrant protein glycosylation is known to be associated with the development of various cancers. Although fucosylation is essential for normal biological functions, alterations in fucosylation are strongly implicated in cancer and increasing metastatic potential. Altered fucosyltarnsferases (FUTs) and fucosidases are found to be involved in many types of malignancies. In this study, we examined the mRNA expressions of fucosidase (<i>FUCA1</i>) and FUTs (<i>FUT</i>s (<i>FUT3</i>, <i>FUT4</i>, <i>FUT5</i>, <i>FUT6</i>, <i>FUT8</i>) in human oral cancer tissues. All <i>FUT</i>s and <i>FUCA1</i> were significantly (P ≤0.05) down-regulated in malignant tissues in comparison with their adjacent normal tissues. The relationship between the clinicopathological parameters and the expression of <i>FUT</i>s and <i>FUCA1</i> revealed that higher mRNA levels of <i>FUT4</i>, <i>FUT5</i>, and <i>FUT8</i> and lower levels of <i>FUT3</i> were associated with progression of disease and lymph node metastasis in oral carcinoma indicating their role in oral cancer progression. Collectively, results suggest that elevated mRNA levels of <i>FUT4</i>, <i>FUT5</i> and <i>FUT8</i> may be used as worst prognostic indicators for oral carcinoma.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"10 2","pages":"123-131"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496247/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39561005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Bone Marrow-Derived Mesenchymal Stromal Cells and Hesperidin in Ameliorating Nephrotoxicity Induced by Cisplatin in Male Wistar Rats. 骨髓间充质基质细胞和橙皮苷对雄性Wistar大鼠顺铂肾毒性的改善作用。
International Journal of Molecular and Cellular Medicine Pub Date : 2021-01-01 Epub Date: 2021-09-01 DOI: 10.22088/IJMCM.BUMS.10.2.133
Khalid Mohamed Mazher, Osama Mohamed Ahmed, Hadeer Abdallah Sayed, Taghreed Mohamed Nabil
{"title":"The Role of Bone Marrow-Derived Mesenchymal Stromal Cells and Hesperidin in Ameliorating Nephrotoxicity Induced by Cisplatin in Male Wistar Rats.","authors":"Khalid Mohamed Mazher,&nbsp;Osama Mohamed Ahmed,&nbsp;Hadeer Abdallah Sayed,&nbsp;Taghreed Mohamed Nabil","doi":"10.22088/IJMCM.BUMS.10.2.133","DOIUrl":"https://doi.org/10.22088/IJMCM.BUMS.10.2.133","url":null,"abstract":"<p><p>Bone marrow-derived mesenchymal stromal cells (BM-MSCs) and antioxidants opened the way for many effective therapeutic experiments against damaged organs like kidneys. Nephrotoxicity is the main complication of chemotherapeutic drugs. Therefore, the present study aimed to investigate the efficacy of BM-MSCs and hesperidin to treat cisplatin-induced nephrotoxicity in rats. Fifty rats were divided into five equal groups of 10 each. Group-I served as a control group, group-II received a single dose of cisplatin (7.5 mg/kg) intraperitoneally to induce nephrotoxicity, group-III received a daily dose of hesperidin (40 mg/kg) orally for four weeks, and on the 5<sup>th</sup> day cisplatin was administered an hour before hesperidin administration. Group-IV consisted of cisplatin-treated rats that were intravenously injected with 1х10<sup>6</sup> BM-MSCs cells/rat once per week. Group V contained cisplatin-treated rats that received a combination of hesperidin and BM-MSCs with the same dosage regimes. After four weeks, serum and kidney samples were collected for biochemical, histological, and immunohistochemical examinations were performed. Cisplatin administered rats showed deteriorated biochemical parameters and severe degenerative changes in renal tissue. Both single and combined hesperidin and BM-MSCs treatments restored the renal biochemical parameters. Histologically, the renal tissues significantly improved in the BM-MSCs treated group in comparison with the hesperidin treated group. Moreover, combined treatment (i.e., group V) showed complete restoration of the normal architecture in the renal tissue. Our data suggest that the combined treatment of BM-MSCs and hesperidin has a potent renoprotective efficacy against cisplatin-induced nephrotoxicity rather than the single treatment.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"10 2","pages":"133-146"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496246/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39561006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quercetin Synergistically Enhances the Anticancer Efficacy of Docetaxel through Induction of Apoptosis and Modulation of PI3K/AKT, MAPK/ERK, and JAK/STAT3 Signaling Pathways in MDA-MB-231 Breast Cancer Cell Line. 槲皮素通过诱导MDA-MB-231乳腺癌细胞凋亡和调控PI3K/AKT、MAPK/ERK、JAK/STAT3信号通路协同增强多西紫杉醇的抗癌作用
International Journal of Molecular and Cellular Medicine Pub Date : 2021-01-01 Epub Date: 2021-05-22 DOI: 10.22088/IJMCM.BUMS.10.1.11
Amir Safi, Esfandiar Heidarian, Reza Ahmadi
{"title":"Quercetin Synergistically Enhances the Anticancer Efficacy of Docetaxel through Induction of Apoptosis and Modulation of PI3K/AKT, MAPK/ERK, and JAK/STAT3 Signaling Pathways in MDA-MB-231 Breast Cancer Cell Line.","authors":"Amir Safi,&nbsp;Esfandiar Heidarian,&nbsp;Reza Ahmadi","doi":"10.22088/IJMCM.BUMS.10.1.11","DOIUrl":"https://doi.org/10.22088/IJMCM.BUMS.10.1.11","url":null,"abstract":"<p><p>Docetaxel is widely used in the treatment of metastatic breast cancer. However, its effectiveness is limited due to chemoresistance and its undesirable side effects. The combination of chemotherapeutic agents and natural compounds is an effective strategy to overcome drug resistance and the ensuing inevitable toxicities. Quercetin is a natural flavonoid with strong antioxidant and anticancer activities. This study aimed to evaluate the cytotoxic and modulatory effects of combined docetaxel and quercetin on the MDA-MB-231 human breast cancer cell line. The cell viability was assessed by MTT assay. The induction of apoptosis was examined using flow cytometry. The role of <i>p53</i> in the apoptotic process was evaluated <i>via</i> qRT-PCR. The levels of BAX, BCL2, ERK1/2, AKT, and STAT3 proteins were measured by Western blot analysis. The results showed that the single-agent treatment with docetaxel or quercetin leads to a decrease in the viability of the MDA-MB-231 cells at 48 h. Furthermore, the combination of docetaxel (7 nM) and quercetin (95 μM) displayed the greatest synergistic effects with a combination index value of 0.76 accompanied by the up regulation of <i>p53</i> and a significant increase in BAX level, as well as decrease in the levels of BCL2, pERK1/2, AKT, and STAT3 proteins (P < 0.05). The concomitant use of docetaxel and quercetin leads to the cell growth inhibition associated with the induction of apoptosis and inhibition of cell survival. Therefore, this study provides a promising therapeutic approach to enhance the efficacy of docetaxel in a less-toxic manner.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"10 1","pages":"11-22"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8256834/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39188783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
Modulation of mRNA Expression of Monoacylglycerol Lipase, Diacylglycerol Lipase and Cannabinoid Receptor-1 in Mice Experimentally Infected with T. gondii. 刚地弓形虫感染小鼠单酰基甘油脂肪酶、二酰基甘油脂肪酶和大麻素受体-1 mRNA表达的调控
International Journal of Molecular and Cellular Medicine Pub Date : 2021-01-01 Epub Date: 2021-09-01 DOI: 10.22088/IJMCM.BUMS.10.2.149
Sahar Rostami-Mansoor, Narges Kalantari, Tahmineh Gorgani-Firouzjaee, Salman Ghaffari, Maryam Ghasemi-Kasman
{"title":"Modulation of mRNA Expression of Monoacylglycerol Lipase, Diacylglycerol Lipase and Cannabinoid Receptor-1 in Mice Experimentally Infected with <i>T. gondii</i>.","authors":"Sahar Rostami-Mansoor,&nbsp;Narges Kalantari,&nbsp;Tahmineh Gorgani-Firouzjaee,&nbsp;Salman Ghaffari,&nbsp;Maryam Ghasemi-Kasman","doi":"10.22088/IJMCM.BUMS.10.2.149","DOIUrl":"https://doi.org/10.22088/IJMCM.BUMS.10.2.149","url":null,"abstract":"<p><p><i>Toxoplasma gondii</i>, an obligate intracellular parasite, infects more than 30% of world's population. This parasite is considered to be neurotropic, and has high tropism for the central nervous system, and potentially induces cryptogenic epilepsy by no clear mechanism. The current study aimed to investigate the alteration of the main components of the endocannabinoid signaling systems in <i>T. gondii</i>-infected mice. For this purpose, the levels of mRNA expression of monoacylglycerol lipase (MAGL), diacylglycerol lipase (DAGL) and cannabinoid receptor-1 (CB1), were measured by quantitative real time PCR.The mRNA expression level of MAGL was increased by ~ 8-fold in the brains of the <i>Toxoplasma</i>-infected group in comparison with non-infected mice (P<0.0001). The mRNA expression of CB1 gene in the brain of the infected mice was ~ 2 times higher than that measured in control group (P<0.01). The mRNA expression level of DAGL remained unchanged in the infected mice. Overall a substantial increase in MAGL and CB1 expression without any changes in DAGL, in the brain of infected mice suggests that <i>T. gondii</i> disturbs the endocannabinoid signaling pathways, which are known as neurotransmitter modulators involved in epilepsy.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"10 2","pages":"149-155"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496245/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39561007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Relationship between rs534654 Polymorphism in TMEM165 Gene and Increased Risk of Bipolar Disorder Type 1. TMEM165基因rs534654多态性与1型双相情感障碍风险增加的关系
International Journal of Molecular and Cellular Medicine Pub Date : 2021-01-01 Epub Date: 2021-09-01 DOI: 10.22088/IJMCM.BUMS.10.2.155
Asmaolhosna Amini, Sara Sadat Aghabozorg Afjeh, Behzad Boshehri, Safar Hamednia, Parisa Mashayekhi, Mir Davood Omrani
{"title":"The Relationship between rs534654 Polymorphism in TMEM165 Gene and Increased Risk of Bipolar Disorder Type 1.","authors":"Asmaolhosna Amini,&nbsp;Sara Sadat Aghabozorg Afjeh,&nbsp;Behzad Boshehri,&nbsp;Safar Hamednia,&nbsp;Parisa Mashayekhi,&nbsp;Mir Davood Omrani","doi":"10.22088/IJMCM.BUMS.10.2.155","DOIUrl":"https://doi.org/10.22088/IJMCM.BUMS.10.2.155","url":null,"abstract":"<p><p>Bipolar disorder (BD) is a major health care concern worldwide. There are some reports showing an association between genes and their variants involved in circadian rhythm; clock and clock related genes function and development of BD in patients. Therefore, the aim of this study was to investigate the possible association of rs534654 variant on <i>TMEM165</i> (transmembrane protein 165) gene with the risk of BD. Genotyping of the rs534654 was carried out using the tetra primers- amplification refractory mutation system-PCR (4P-ARMS-PCR) method in 203 patients with BD type 1 and their healthy and normal counterpart. The frequency of the G and A alleles of rs534654 polymorphism was 53% and 47%, respectively in patients. Genotype frequency in patients in comparison with control subjects was 5.4% vs 2.5% for the AA homozygous; 11.3% vs 80.8% for the GG homozygous; and 83.3% vs 16.7% for the heterozygous AG. Statistical analysis showed a significant difference in frequencies between the control and patient groups (P = 0.001). Based on this finding, it is possible to conclude that the impairment in the rs534654 single nucleotide polymorphism in <i>TMEM165</i> gene is associated with the risk of BD development.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"10 2","pages":"162-165"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496248/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39561008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信