ChemCatChemPub Date : 2024-11-12DOI: 10.1002/cctc.202482101
Dr. Yulin Zhou, Dr. Jing Sun, Dr. Sébastien Gallet, Dr. Jesus Raya, Prof. Corinne Boudon, Prof. Antoine Bonnefont, Prof. Laurent Ruhlmann, Dr. Vasilica Badets
{"title":"Front Cover: Nitrite Electroreduction Enhanced by Hybrid Compounds of Keggin Polyoxometalates and 1-Butyl-3-Vinylimidazolium (ChemCatChem 21/2024)","authors":"Dr. Yulin Zhou, Dr. Jing Sun, Dr. Sébastien Gallet, Dr. Jesus Raya, Prof. Corinne Boudon, Prof. Antoine Bonnefont, Prof. Laurent Ruhlmann, Dr. Vasilica Badets","doi":"10.1002/cctc.202482101","DOIUrl":"https://doi.org/10.1002/cctc.202482101","url":null,"abstract":"<p><b>The Front Cover</b> highlights an immobilization method of four Keggin-type polyoxometalates (POMs) ([H<sub>2</sub>W<sub>12</sub>O<sub>40</sub>]<sup>6−</sup>, [BW<sub>12</sub>O<sub>40</sub>]<sup>5−</sup> [SiW<sub>12</sub>O<sub>40</sub>]<sup>4−</sup>, [PW<sub>12</sub>O<sub>40</sub>]<sup>3−</sup>) by using the reaction with an ionic liquid, 1-butyl-3-vinylimidazolium (BVIM) bromide. The reaction yields a hybrid material (BVIM-POM) as a water-insoluble salt. Cross polarization <sup>1</sup>H-<sup>31</sup>P NMR evidenced the presence of BVIM in the structure of (BVIM)<sub>3</sub>[PW<sub>12</sub>O<sub>40</sub>]. The salt is mixed with carbon powder and Nafion to prepare an ink and casted on glassy carbon electrodes. The electrochemical behavior of immobilized POMs material is preserved while the electrochemical activity for nitrite reduction is measured. Differential electrochemical mass spectrometry (DEMS) shows the formation of NO and N<sub>2</sub>O. More information can be found in the Research Article by Laurent Ruhlmann, Vasilica Badets, and co-workers (DOI: 10.1002/cctc.202400226).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"16 21","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cctc.202482101","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cover Feature: Photoactive Conjugated Polyelectrolyte-Ionomer Composite Coatings for Versatile Photoreactors (ChemCatChem 21/2024)","authors":"Bolormaa Bayarkhuu, Sunil Kumar, Hyekyung Cho, Jueun Park, Mingizem Gashaw Seid, Jeehye Byun","doi":"10.1002/cctc.202482102","DOIUrl":"https://doi.org/10.1002/cctc.202482102","url":null,"abstract":"<p><b>The Cover Feature</b> depicts a composite of processable conjugated polyelectrolytes and ionomers, forming a photocatalytic thin film with visible light activity. This film facilitates the creation of stable, versatile, and scalable photoreactors with enhanced charge separation and transfer for diverse photocatalytic applications. More information can be found in the Research Article by Jeehye Byun and co-workers (DOI: 10.1002/cctc.202400981).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"16 21","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cctc.202482102","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemCatChemPub Date : 2024-10-21DOI: 10.1002/cctc.202482001
Karam Hashem, Kuiwei Yang, Ramakrishna Krishnan, Yugen Zhang, Jianwen Jiang
{"title":"Front Cover: Ethylene Dimerization, Isomerization and Trimerization: Mechanistic Insights into Competing Pathways on Metal–Organic Framework Supported Metal Hydrides (ChemCatChem 20/2024)","authors":"Karam Hashem, Kuiwei Yang, Ramakrishna Krishnan, Yugen Zhang, Jianwen Jiang","doi":"10.1002/cctc.202482001","DOIUrl":"https://doi.org/10.1002/cctc.202482001","url":null,"abstract":"<p><b>The Front Cover</b> visualizes competing pathways in ethylene oligomerization including dimerization, isomerization and trimerization, investigated by Jianwen Jiang and co-workers on defective HKUST-1 supported metal hydrides through density functional theory calculations. The microscopic insights would facilitate the rational design of new catalysts based on metal-organic frameworks for selective ethylene oligomerization. More information can be found in the Research Article by J. Jiang and co-workers (DOI: 10.1002/cctc.202400906).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"16 20","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cctc.202482001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cover Feature: Economically competitive Organic Acid-Base mixtures as Catalysts for the Self-Condensation of Diols into Polyethers (ChemCatChem 20/2024)","authors":"Flore Kilens, Ane Olazabal, Daniele Mantione, Andere Basterretxea, Haritz Sardon, Coralie Jehanno","doi":"10.1002/cctc.202482002","DOIUrl":"https://doi.org/10.1002/cctc.202482002","url":null,"abstract":"<p><b>The Cover Feature</b> depicts the award ceremony of a tournament. Several teams of chemists faced off to find a new organic base to replace the costly 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD). Each team investigates one base, displayed on the banners hanging in the room. The ceremony celebrates the winner of the study, i.e., 1,1,3,3-tetramethyl guanidine (TMG). This illustration creatively conveys the essence of the research presented by Coralie Jehanno and co-workers, emphasizing the economic competitiveness and efficiency of the TMG base over the existing TBD system. More information can be found in the Research Article by C. Jehanno and co-workers (DOI: 10.1002/cctc.202400215).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"16 20","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cctc.202482002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemCatChemPub Date : 2024-10-09DOI: 10.1002/cctc.202401539
{"title":"Retraction: Nanoporous Au/Ag Catalyzed Benzylic sp3C−H Oxidation of 9H-Fluorene Derivatives and Similar Molecules With TBHP","authors":"","doi":"10.1002/cctc.202401539","DOIUrl":"https://doi.org/10.1002/cctc.202401539","url":null,"abstract":"<p><b>RETRACTION</b>: J. Thayssen, W. Riedel, T. Risse, A. Staubitz and A. Wittstock, “Nanoporous Au/Ag Catalyzed Benzylic sp<sup>3</sup>C−H Oxidation of 9H-Fluorene Derivatives and Similar Molecules With TBHP,” <i>ChemCatChem</i> <b>2024</b>, <i>16</i>, e202301695, https://doi.org/10.1002/cctc.202301695.</p><p>The above article, published online on 25 March 2024 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the authors; the journal Editor-in-Chief, Sandra González Gallardo; and Wiley-VCH GmbH, Weinheim. Following publication, the authors noticed that for some experiments, there might have been cross-contamination with another catalyst due to an insufficient cleaning procedure by laboratory dish washer only. As it is unclear which experiments are affected, all need to be reproduced. The authors intend to repeat experiments to produce correct data. Since repetition of experiments will take considerable time and the editors cannot be certain that new data will not affect the conclusions of the study, they have decided it is appropriate to retract the article.</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"16 20","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cctc.202401539","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemCatChemPub Date : 2024-10-09DOI: 10.1002/cctc.202401397
{"title":"CORRIGENDUM: Metal Oxides Derived from Perovskite or Spinel for the Selective Hydrogenation of α,β-Unsaturated Aldehydes: A Mini–Review”","authors":"","doi":"10.1002/cctc.202401397","DOIUrl":"https://doi.org/10.1002/cctc.202401397","url":null,"abstract":"<p>X. Li, H. Xin. Metal Oxides Derived from Perovskite or Spinel for the Selective Hydrogenation of α,β-Unsaturated Aldehydes: A Mini–Review, ChemCatChem, 2024; 16: e202301483.</p><p>In the main text, Table 1 and Table 2 were mistakenly deleted.</p><p>We apologize for this error.</p><p>Table 1 Mixed metal oxides with perovskite or spinel structure as supports to load noble metal NPs for the selective hydrogenation of α,β-unsaturated aldehydes.\u0000</p><p>Table 2 Mixed metal oxides with perovskite or spinel structure as catalyst precursors or as catalyst for the (transfer) hydrogenation of α,β-unsaturated aldehydes.\u0000</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"16 21","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cctc.202401397","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemCatChemPub Date : 2024-10-07DOI: 10.1002/cctc.202481901
Dr. Wei Tian, Dr. José E. Herrera
{"title":"Front Cover: Catalytic Relevance of Mg-Al-O Basic Centers in the Upgrade of Ethanol to n-Butanol (ChemCatChem 19/2024)","authors":"Dr. Wei Tian, Dr. José E. Herrera","doi":"10.1002/cctc.202481901","DOIUrl":"https://doi.org/10.1002/cctc.202481901","url":null,"abstract":"<p><b>The Front Cover</b> depicts the stages ethanol follows during its conversion to n-butanol over a bifunctional catalyst, and the use of probe molecules and spectroscopy to interrogate catalytic sites. Applying a combination of in-situ FTIR, CO<sub>2</sub>-TPD, and operando titration, Wei Tian and José Herrera use carbon dioxide and acetic acid to identify and quantify catalytically relevant functionalities responsible for C–C couplings. Their findings indicate n-butanol formation catalyzed by MgAlO systems is regulated by α-carbon proton abstraction taking place only over strong basic centers. More information can be found in the Research Article by Wei Tian and José E. Herrera (DOI: 10.1002/cctc.202400225).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"16 19","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cctc.202481901","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemCatChemPub Date : 2024-10-07DOI: 10.1002/cctc.202481902
Georgina P. Ortenzi, Candelaria Leal-Marchena, Marcos B. Gómez Costa, M. Laura Martínez
{"title":"Cover Feature: Supported Cobalt Oxide Nanoparticles: The Influence of Mesoporous Materials and their Role in Methyl Phenyl Sulfide Oxidation Reactions (ChemCatChem 19/2024)","authors":"Georgina P. Ortenzi, Candelaria Leal-Marchena, Marcos B. Gómez Costa, M. Laura Martínez","doi":"10.1002/cctc.202481902","DOIUrl":"https://doi.org/10.1002/cctc.202481902","url":null,"abstract":"<p>The Cover Feature points to the work of M. Laura Martínez and co-workers, who investigated the effect of incorporating cobalt oxide nanoparticles into mesoporous materials, specifically SBA-15 and mesoporous cellular foam (MCF). The catalytic activity of Co-MCF was found to be higher in the oxidation reactions of methyl phenyl sulfide, resulting in improved yields and selectivity towards sulfone formation. This enhanced performance can be attributed to the larger quantity of CoO present, which facilitates the formation of catalytically active complexes such as [Co-OOH(Co3+)]. More information can be found in the Research Article by M. Laura Martínez and co-workers (DOI: 10.1002/cctc.202400836).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"16 19","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cctc.202481902","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemCatChemPub Date : 2024-09-25DOI: 10.1002/cctc.202401032
Nicolas Illy, Hongqing Fu, Emma Mongkhoun
{"title":"Simple/commercially-available Lewis acid in anionic ring-opening polymerization: powerful compounds with multiple applications in macromolecular engineering","authors":"Nicolas Illy, Hongqing Fu, Emma Mongkhoun","doi":"10.1002/cctc.202401032","DOIUrl":"https://doi.org/10.1002/cctc.202401032","url":null,"abstract":"Simple and commercially-available Lewis acids (LA) are commonly used catalysts in anionic ring-opening polymerization (AROP) reactions. In particular, for the AROP of epoxides, the addition of a Lewis acid allows the transition from a so-called end-chain mechanism to a monomer-activated mechanism. The presence of the LA simultaneously leads to a decrease in the reactivity of active centers through the formation of a three-species ate complex and to the activation of the monomer by LA coordination to the oxygen atom of the oxirane ring. These two effects result in both an increase in propagation kinetics and a decrease in transfer reactions, which has enabled the synthesis of high molecular weight polyethers. However, the impact of Lewis acids goes far beyond these classic effects. They have indeed enabled the polymerization of new functional monomers as well as the synthesis of heterotelechelic macromolecules. Also widely used as catalysts in copolymerization reactions (statistical, sequential, or alternating) Lewis acids can strongly influence the composition and sequence of monomer units in macromolecules. Finally, Lewis acids can also significantly influence the architecture of the obtained macromolecules. This review aims to list the various contributions of Lewis acids to macromolecular engineering and illustrate them with well-chosen examples.","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"38 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142317803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemCatChemPub Date : 2024-09-24DOI: 10.1002/cctc.202481801
Dr. Mohamed M. Elnagar, Dr. Ludwig A. Kibler, Prof. Dr. Timo Jacob
{"title":"Front Cover: Effect of Alkali Metal Cations and Trace Metal Impurities on Cathodic Corrosion of Gold Electrode Surfaces (ChemCatChem 18/2024)","authors":"Dr. Mohamed M. Elnagar, Dr. Ludwig A. Kibler, Prof. Dr. Timo Jacob","doi":"10.1002/cctc.202481801","DOIUrl":"https://doi.org/10.1002/cctc.202481801","url":null,"abstract":"<p><b>The Front Cover</b> illustrates how different alkali metal cations influence the cathodic corrosion of gold surfaces. Polarizing gold at highly negative potentials results in various structures: nanoporous surfaces with CsOH, spherical nanoparticles and triangular pits with KOH, octahedral nanocrystals with NaOH, and triangular pits with LiOH. The study presented here also highlights the crucial role of electrolyte purity, as trace iron and nickel impurities in CsOH significantly impact cathodic corrosion. More information can be found in the Research Article by Mohamed M. Elnagar, Ludwig A. Kibler, and Timo Jacob (DOI: 10.1002/cctc.202400526).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"16 18","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cctc.202481801","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142316811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}