{"title":"Energy states and exchange energy of coupled double quantum dot in a magnetic field","authors":"M. Elsaid, Eshtiaq Hjaz, A. Shaer","doi":"10.22034/IJND.2017.24353","DOIUrl":"https://doi.org/10.22034/IJND.2017.24353","url":null,"abstract":"The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus confining frequency and magnetic field versus potential barrier height phase diagram of DQD .Furthermore, we have investigated the dependence of the exchange energy of two electron double quantum dot on the confining frequency, potential height barrier, barrier width and magnetic field strength. The comparisons show that our results are in very good agreement with reported works.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":"7 1","pages":"1-8"},"PeriodicalIF":1.5,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81327943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vibration analysis of a Timoshenko non-uniform nanobeam based on nonlocal theory: An analytical solution","authors":"S. Hashemi, H. Khaniki","doi":"10.22034/IJND.2017.24378","DOIUrl":"https://doi.org/10.22034/IJND.2017.24378","url":null,"abstract":"In this article free vibration of a Timoshenko nanobeam with variable cross-section is investigated using nonlocal elasticity theory within the scope of continuum mechanics. Small scale effects are modelled after Eringen’s nonlocal elasticity theory while the non-uniformity is presented by exponentially varying width through the beam length with constant thickness. Analytical solution is achieved for both Timoshenko beams and nanobeams with different boundary conditions including both ends being simply-supported (S-S), both ends being clamped (C-C) and one end clamped other free (C-F). It is shown that section variation accompanying small scale effects has a noticeable effect on natural frequencies of non-uniform Timoshenko beams at nano-scale. In order to illustrate these effects, Natural frequencies of single-layered graphene nano-ribbons (GNRs) with various boundary conditions are obtained for different nonlocal and non-uniform parameter which shows a great sensitivity to non-uniformity in different shape modes.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":"100 1","pages":"70-81"},"PeriodicalIF":1.5,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82313154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DFT Investigations for sensing capability of a single-walled Carbon nanotube for adsorptions H2, N2, O2 and CO molecules","authors":"Alaa M. Khudhair, F. Ajeel, M. Mohammed","doi":"10.22034/IJND.2017.24379","DOIUrl":"https://doi.org/10.22034/IJND.2017.24379","url":null,"abstract":"Single-walled carbon nanotubes (SWCNTs) have a great deal of attention due to their unique properties. These properties of SWCNTs can be used in various devices such as nanosensors. SWCNTs nanosensors have fast response time and high sensitivity to special gas molecules which is very favorable for important applications. Recently, gas adsorption over outer surface of SWCNTs nanosensors was arguably a very interesting theoretical study. Here, the sensing capability of (6,0) SWCNTs for adsorption H2, N2, O2 and CO molecules are studied.Thegeometry optimization, electronic, thermodynamic, and vibrational properties have been investigated. All the calculations are based on the density functional theory (DFT) at the B3LYP/6-31G level through the Gaussian 09W program package. It is found that, adding these molecules to SWCNT causing a small increase in the bond lengths, and an increase in the total energy. In IR spectra, it is observed increasing the vibration modes and higher stretching vibration wave numbers of SWCNT with the studies molecules. This work confirms that (6,0) SWCNT can be used as nanosensor, and using DFT investigations, it is possible to obtain much more data to apply in medical science and industrial technologies.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":"112 1","pages":"82-88"},"PeriodicalIF":1.5,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89535219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of nonionic surfactant additives on the performance of nanofluid in the heat exchanger","authors":"G. P. Lakhawat, R. Ugwekar, S. Suke, V. M. Nanoti","doi":"10.22034/IJND.2017.24373","DOIUrl":"https://doi.org/10.22034/IJND.2017.24373","url":null,"abstract":"* Corresponding Author Email: sgsuke@hotmail.com How to cite this article P Lakhawat G, P Ugwekar R, G Suke S. Effect of nonionic surfactant additives on the performance of nanofluid in the heat exchanger. Int. J. Nano Dimens., 2017; 8(1): 18-30, DOI: 10.22034/ijnd.2017.24373 Abstract A nanofluid is mixture of nano sized particles and a base fluid. This paper investigates by using laboratory based double pipe heat exchanger model, the performance of nanofluid containing about 48.46nm particle size nanoparticles (ZnO) without or with addition of nonionic surfactant Rokanol K7 (500ppm) into the base fluid double distilled water to prepared three different concentrations 1.0%, 2% and 3% (v/v) of ZnOwater or ZnO-RK7. Effects of temperature and concentration of nanoparticles on viscosity and heat transfer coefficient in heat exchanger are investigated. The experimental results shows that the viscosity of nanofluids increased with increasing concentration of fluid whereas decreased with increasing temperature from 20 to 60oC. However, it has been also observed that heat transfer coefficient increases with the operating temperature and concentration of nanoparticles. The conclusion derived for the study is that overall heat transfer coefficient enhanced with increasing concentration upto 3% of ZnO-RK7 as compared to without surfactant nanofluids.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":"180 1","pages":"18-30"},"PeriodicalIF":1.5,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73898878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Systematic review: Superparamagnetic Iron Oxide nanoparticles as contrast agents in diagnosis of multiple sclerosis","authors":"F. Fathi, M. Sadjadi, M. G. Cherati","doi":"10.7508/IJND.2016.04.001","DOIUrl":"https://doi.org/10.7508/IJND.2016.04.001","url":null,"abstract":"Several MRI contrast agents (CAs) are used in medical diagnosis that gadolinium (Gd3+) is the most widely used as contrast agents. Unfortunately, its toxicity is due to its inefficiency. In this review, we discuss about the ability of SPIONs in MRI and application in Multiple Sclerosis diagnosis. Superparamagnetic iron oxide nanoparticles (SPIONs) such as magnetite nanoparticles are used as good CAs in recent years because of biocompatibility, low level of toxicity, magnetic properties, simple synthesis and coating to use in medical diagnosis. Uncoated magnetite nanonoparticles are insoluble in water. Hydrophilic coatings result water solubility of nanoparticles and prolonged circulation half-lives of SPION and reduce recognition by RES. SPIONs have an important role in diagnosis of multiple sclerosis (MS) by MRI. SPIONs are MRI contrast agents better than gadolinium because, SPIONs taken up by macrophages but not Gd-nanoparticles.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":"332 1","pages":"270-277"},"PeriodicalIF":1.5,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73588606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A theoretical study on the adsorption behaviors of Ammonia molecule on N-doped TiO2 anatase nanoparticles: Applications to gas sensor devices","authors":"A. Abbasi, J. J. Sardroodi","doi":"10.7508/IJND.2016.04.010","DOIUrl":"https://doi.org/10.7508/IJND.2016.04.010","url":null,"abstract":"We have performed density functional theory investigations on the adsorption properties of ammonia molecule on the undoped and N-doped TiO2 anatase nanoparticles. We have geometrically optimized the constructed undoped and N-doped nanoparticles in order to fully understand the adsorption behaviors of ammonia molecule. For TiO2 anatase nanoparticles, the binding site is preferentially located on the fivefold coordinated titanium sites. However, we have mainly studied the interaction of NH3 molecule over the fivefold coordinated titanium sites including the bond lengths, bond angles, adsorption energies, density of states (DOSs) and molecular orbitals. The results indicated that the adsorption of NH3 molecule on the N-doped nanoparticles is energetically more favorable than the adsorption on the undoped one, suggesting the strong adsorption of NH3 molecule on the N-doped nanoparticles. Adsorption on the N-doped nanoparticles leads to the more stable and favorable complexes. Our theoretical work represents that the N-doped nanoparticles have higher sensing capability than the pristine ones to remove the hazardous NH3 molecules from the environment.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":"18 1","pages":"349-359"},"PeriodicalIF":1.5,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78703348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrical and optical properties of a small capped (5, 0) zigzag Carbon nanotube by B, N, Ge and Sn atoms: DFT theoretical calculation","authors":"M. Kamalian, A. Abbasi, Y. S. Jalili","doi":"10.7508/IJND.2016.04.008","DOIUrl":"https://doi.org/10.7508/IJND.2016.04.008","url":null,"abstract":"In this study we investigate the effect of atoms such as B, N, Ge and Sn on the optical and the electrical properties of capped (5, 0) zigzag carbon nanotube, using DFT calculation method. These elements were attached to the one end of the carbon nanotube. We considered four different structure designs as possible candidates for a p-n junction device. The electrical properties of these structures were investigated using the quantum chemical information analysis which leads to the energy band gap, dipole moments, electrical charges and the DOS of these structures. Further TD-DFT calculations were performed to obtain the optical properties of the structure designs to investigate the electron mobility, indicating higher conductivity and higher rectifying voltage in the CNT terminated by Sn.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":"51 5","pages":"329-335"},"PeriodicalIF":1.5,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72622410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electronic properties studies of Benzene under Boron Nitride nano ring field","authors":"M. Khaleghian, F. Azarakhshi","doi":"10.7508/IJND.2016.04.004","DOIUrl":"https://doi.org/10.7508/IJND.2016.04.004","url":null,"abstract":"* Corresponding Author Email: mehr_khaleghian@yahoo.com How to cite this article Khaleghian M, Azarakhshi F. Electronic properties studies of Benzene under Boron Nitride nano ring field. Int. J. Nano Dimens., 2016; 7 (4): 290-294., DOI: 10.7508/ijnd.2016.04.004 Abstract In this study, B12N12 Nano ring has been selected because it consist of four 6-side rings and polar bonds B-N which in comparison with non-polar bonds C-C, is more suitable for the study of the absorption of other compounds. So reactivity and stability of Benzene alone and in the presence B12N12 nano ring field checked. To determine the non-bonded interaction energies between Benzene and B12N12 nano ring in different orientations and distances, geometry of molecules with density functional theory B3LYP method and 6-31g *basis set optimized. Then calculated the natural bond orbital (NBO), nuclear independent chemical shift (NICS) and muliken charge of Benzene atoms alone and in the presence B12N12 done. The results of any order explains reduce the reactivity and increase stability of Benzene in the presence B12N12 nano ring and electron transfer from the nano ring to Benzene. The gaussian quantum chemistry package is used for all calculations.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":"42 1","pages":"290-294"},"PeriodicalIF":1.5,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86571019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mehran Sadeghalvaad, S. Sabbaghi, Pooneh Afsharimoghadam
{"title":"Synthesis and application of the drilling mud additive in the presence of surfactants","authors":"Mehran Sadeghalvaad, S. Sabbaghi, Pooneh Afsharimoghadam","doi":"10.7508/IJND.2016.04.007","DOIUrl":"https://doi.org/10.7508/IJND.2016.04.007","url":null,"abstract":"Drilling fluid is the most important lifeline of the drilling operation, that main task is facilitate the cuttings removal of the drilling. There are varieties of drilling fluids such as sodium bentonite based-drilling fluid is called “mud” and drilling foam or surfactant based-drilling fluid is called “soap”. The present work aims are study on the modified drilling mud properties by using the TiO2/ Polyacrylamide (PAM) as a nanocomposite additive. This additive was obtained through the aqueous solution polymerization of acrylamide monomer in the presence of TiO2 nanoparticles and high hydrophilic-lipophilic balance (HLB) surfactants such as sodium dodecyl sulfate (SDS) and polyoxyethylene sorbitan mono-oleate (Tween 80). At first, the TiO2/PAM nanocomposite was characterized by XRD, UV-Vis, FTIR, DLS and SEM. Then the viscosity, density -specific gravity- and filtration properties of the modified drilling mud were investigated in different amount of nanocomposite compounds. The results indicated that the density, fluid loss and filter cake thickness of the modified drilling mud were decreased with the increase of the surfactant concentration, whereas the viscosity was increased. With the increasing amount of SDS from 0.1 to 1.2 g in the synthesis process, the viscosity was increased approximately 4 cP and the density was decreased about 0.1 specific gravity. The nanoparticle and HLB value were affected in the filtration properties, but in general, that improved the fluid loss and filter cake thickness about 28 and 38% compared the based drilling mud, respectively.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":"33 1","pages":"321-328"},"PeriodicalIF":1.5,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73603258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Scanning impedance microscopy (SIM): A novel approach for AC transport imaging","authors":"M. Fardi, S. S. Hassani","doi":"10.7508/IJND.2016.04.002","DOIUrl":"https://doi.org/10.7508/IJND.2016.04.002","url":null,"abstract":"Scanning Impedance Microscopy (SIM) is one of the novel scanning probe microscopy (SPM) techniques, which has been developed to taking image from sample surface, providing quantitative information with high lateral resolution on the interface capacitance, and investigating the local capacitance–voltage (C–V) behavior of the interface and AC transport properties. The SIM is an ordinary AFM equipped with a conductive tip (C-AFM), which is imaged by non-contact mode with harmonic detection. This method is based on the local detection of surface potential or the amplitude and phase of local voltage oscillations induced by a lateral periodic bias applied across the sample. SIM can simultaneously collect the amplitude and phase signals and image the morphology of the surfaces; afterward, calculate the corresponding histogram for each map. Hence, the amplitude and phase signals of the surface potential oscillations are related to the sample impedance. SIM can also be integrated with Surface Potential Microscopy (SSPM). The combination of these techniques provides an approach for the quantitative analysis of local DC and AC transport properties. These advantages give SIM a higher resolution than other SPM techniques and indicate its immense potential for vast applications. The combination of SSPM and SIM were demonstrated for a Schottky diode, but can be applied to any semiconductor device.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":"45 1","pages":"278-283"},"PeriodicalIF":1.5,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88078681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}