非离子表面活性剂添加剂对换热器中纳米流体性能的影响

IF 1.2 Q4 NANOSCIENCE & NANOTECHNOLOGY
G. P. Lakhawat, R. Ugwekar, S. Suke, V. M. Nanoti
{"title":"非离子表面活性剂添加剂对换热器中纳米流体性能的影响","authors":"G. P. Lakhawat, R. Ugwekar, S. Suke, V. M. Nanoti","doi":"10.22034/IJND.2017.24373","DOIUrl":null,"url":null,"abstract":"* Corresponding Author Email: sgsuke@hotmail.com How to cite this article P Lakhawat G, P Ugwekar R, G Suke S. Effect of nonionic surfactant additives on the performance of nanofluid in the heat exchanger. Int. J. Nano Dimens., 2017; 8(1): 18-30, DOI: 10.22034/ijnd.2017.24373 Abstract A nanofluid is mixture of nano sized particles and a base fluid. This paper investigates by using laboratory based double pipe heat exchanger model, the performance of nanofluid containing about 48.46nm particle size nanoparticles (ZnO) without or with addition of nonionic surfactant Rokanol K7 (500ppm) into the base fluid double distilled water to prepared three different concentrations 1.0%, 2% and 3% (v/v) of ZnOwater or ZnO-RK7. Effects of temperature and concentration of nanoparticles on viscosity and heat transfer coefficient in heat exchanger are investigated. The experimental results shows that the viscosity of nanofluids increased with increasing concentration of fluid whereas decreased with increasing temperature from 20 to 60oC. However, it has been also observed that heat transfer coefficient increases with the operating temperature and concentration of nanoparticles. The conclusion derived for the study is that overall heat transfer coefficient enhanced with increasing concentration upto 3% of ZnO-RK7 as compared to without surfactant nanofluids.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of nonionic surfactant additives on the performance of nanofluid in the heat exchanger\",\"authors\":\"G. P. Lakhawat, R. Ugwekar, S. Suke, V. M. Nanoti\",\"doi\":\"10.22034/IJND.2017.24373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"* Corresponding Author Email: sgsuke@hotmail.com How to cite this article P Lakhawat G, P Ugwekar R, G Suke S. Effect of nonionic surfactant additives on the performance of nanofluid in the heat exchanger. Int. J. Nano Dimens., 2017; 8(1): 18-30, DOI: 10.22034/ijnd.2017.24373 Abstract A nanofluid is mixture of nano sized particles and a base fluid. This paper investigates by using laboratory based double pipe heat exchanger model, the performance of nanofluid containing about 48.46nm particle size nanoparticles (ZnO) without or with addition of nonionic surfactant Rokanol K7 (500ppm) into the base fluid double distilled water to prepared three different concentrations 1.0%, 2% and 3% (v/v) of ZnOwater or ZnO-RK7. Effects of temperature and concentration of nanoparticles on viscosity and heat transfer coefficient in heat exchanger are investigated. The experimental results shows that the viscosity of nanofluids increased with increasing concentration of fluid whereas decreased with increasing temperature from 20 to 60oC. However, it has been also observed that heat transfer coefficient increases with the operating temperature and concentration of nanoparticles. The conclusion derived for the study is that overall heat transfer coefficient enhanced with increasing concentration upto 3% of ZnO-RK7 as compared to without surfactant nanofluids.\",\"PeriodicalId\":14081,\"journal\":{\"name\":\"international journal of nano dimension\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"international journal of nano dimension\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/IJND.2017.24373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"international journal of nano dimension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/IJND.2017.24373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

P Lakhawat G, P Ugwekar R, G Suke S.非离子表面活性剂添加剂对纳米流体热交换器性能的影响。Int。J.纳米尺寸。, 2017;摘要纳米流体是纳米大小的颗粒和基流体的混合物。本文采用实验室双管换热器模型,研究了在基液双蒸馏水中不添加或添加非离子表面活性剂Rokanol K7 (500ppm)制备三种不同浓度的ZnOwater或ZnO- rk7(1.0%、2%和3% (v/v))的纳米流体的性能。研究了温度和纳米颗粒浓度对换热器粘度和换热系数的影响。实验结果表明,在20 ~ 60℃范围内,纳米流体的黏度随流体浓度的增加而增加,随温度的升高而降低。然而,也观察到传热系数随操作温度和纳米颗粒浓度的增加而增加。研究得出的结论是,与不含表面活性剂的纳米流体相比,ZnO-RK7浓度增加至3%时,总体传热系数增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of nonionic surfactant additives on the performance of nanofluid in the heat exchanger
* Corresponding Author Email: sgsuke@hotmail.com How to cite this article P Lakhawat G, P Ugwekar R, G Suke S. Effect of nonionic surfactant additives on the performance of nanofluid in the heat exchanger. Int. J. Nano Dimens., 2017; 8(1): 18-30, DOI: 10.22034/ijnd.2017.24373 Abstract A nanofluid is mixture of nano sized particles and a base fluid. This paper investigates by using laboratory based double pipe heat exchanger model, the performance of nanofluid containing about 48.46nm particle size nanoparticles (ZnO) without or with addition of nonionic surfactant Rokanol K7 (500ppm) into the base fluid double distilled water to prepared three different concentrations 1.0%, 2% and 3% (v/v) of ZnOwater or ZnO-RK7. Effects of temperature and concentration of nanoparticles on viscosity and heat transfer coefficient in heat exchanger are investigated. The experimental results shows that the viscosity of nanofluids increased with increasing concentration of fluid whereas decreased with increasing temperature from 20 to 60oC. However, it has been also observed that heat transfer coefficient increases with the operating temperature and concentration of nanoparticles. The conclusion derived for the study is that overall heat transfer coefficient enhanced with increasing concentration upto 3% of ZnO-RK7 as compared to without surfactant nanofluids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
international journal of nano dimension
international journal of nano dimension NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
2.80
自引率
20.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信