多奈哌齐新型药物载体的开发与评价

IF 1.2 Q4 NANOSCIENCE & NANOTECHNOLOGY
S. Mukhopadhyay, N. Madhav, K. Upadhyaya
{"title":"多奈哌齐新型药物载体的开发与评价","authors":"S. Mukhopadhyay, N. Madhav, K. Upadhyaya","doi":"10.22034/IJND.2017.24354","DOIUrl":null,"url":null,"abstract":"The purpose of the present study was to formulate and evaluate donepezil loaded bio-nanoparticles for effective treatment of Alzheimer’s disease. For the preparation of bio-nanoparticles biomaterial was isolated from fruits of Carica papaya by an economic method. The biomaterial recovered from the concentrate was subjected for various physicochemical properties like color, solubility, color changing point and chemical test. Bio-nanoparticles were prepared by modified nanoprecipitation method in different batches with variable drug/biomaterial ratio. Prepared batches were subjected for various evaluation studies like particle size, zeta potential, scanning electron microscopic studies, transmission electronmicroscopy, surface entrapment, in-vitro diffusion, differential scanning calorimetry and stability. Particle size and zeta potential result revealed that all nanoformulation were within range of 1.808 to 995.1 with slight negative in charge. Scanning electron microscopy and transmission electronmicroscopy report indicate that formulations were spherical in shape with less or no aggregation. Less surface entrapment leads to better drug entrapped inside nanomatrix. Bio-nanoformulations were capable of releasing the drug in a slow sustained manner.  From the present investigation, it may be concluded that biomaterial isolated from fruits of Carica papaya used in the preparation of bio-nanoparticle act as an efficient carriers for deliver donepezil at a controlled rate and may significantly improve the ability to cross blood-brain barrier.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Development and evaluation of bio-nanoparticles as novel drug carriers for the delivery of Donepezil\",\"authors\":\"S. Mukhopadhyay, N. Madhav, K. Upadhyaya\",\"doi\":\"10.22034/IJND.2017.24354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of the present study was to formulate and evaluate donepezil loaded bio-nanoparticles for effective treatment of Alzheimer’s disease. For the preparation of bio-nanoparticles biomaterial was isolated from fruits of Carica papaya by an economic method. The biomaterial recovered from the concentrate was subjected for various physicochemical properties like color, solubility, color changing point and chemical test. Bio-nanoparticles were prepared by modified nanoprecipitation method in different batches with variable drug/biomaterial ratio. Prepared batches were subjected for various evaluation studies like particle size, zeta potential, scanning electron microscopic studies, transmission electronmicroscopy, surface entrapment, in-vitro diffusion, differential scanning calorimetry and stability. Particle size and zeta potential result revealed that all nanoformulation were within range of 1.808 to 995.1 with slight negative in charge. Scanning electron microscopy and transmission electronmicroscopy report indicate that formulations were spherical in shape with less or no aggregation. Less surface entrapment leads to better drug entrapped inside nanomatrix. Bio-nanoformulations were capable of releasing the drug in a slow sustained manner.  From the present investigation, it may be concluded that biomaterial isolated from fruits of Carica papaya used in the preparation of bio-nanoparticle act as an efficient carriers for deliver donepezil at a controlled rate and may significantly improve the ability to cross blood-brain barrier.\",\"PeriodicalId\":14081,\"journal\":{\"name\":\"international journal of nano dimension\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"international journal of nano dimension\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/IJND.2017.24354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"international journal of nano dimension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/IJND.2017.24354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

本研究的目的是制定和评估多奈哌齐负载的生物纳米颗粒对阿尔茨海默病的有效治疗。采用经济的方法从番木瓜果实中分离制备纳米生物材料。从浓缩物中回收的生物材料进行了颜色、溶解度、变色点和化学等各种理化性质的测试。采用改进的纳米沉淀法,以不同的药物/生物材料比制备不同批次的生物纳米颗粒。制备的批次进行了各种评估研究,如粒度、zeta电位、扫描电镜研究、透射电镜、表面包埋、体外扩散、差示扫描量热法和稳定性。粒径和zeta电位均在1.808 ~ 995.1的范围内,具有轻微的负电荷。扫描电镜和透射电镜报告表明,配方为球形,很少或没有聚集。较少的表面包裹导致药物更好地包裹在纳米基质内。生物纳米制剂能够以缓慢持续的方式释放药物。本研究表明,番木瓜果实中分离的生物材料可作为多奈哌齐的有效载体,并可有效提高其通过血脑屏障的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and evaluation of bio-nanoparticles as novel drug carriers for the delivery of Donepezil
The purpose of the present study was to formulate and evaluate donepezil loaded bio-nanoparticles for effective treatment of Alzheimer’s disease. For the preparation of bio-nanoparticles biomaterial was isolated from fruits of Carica papaya by an economic method. The biomaterial recovered from the concentrate was subjected for various physicochemical properties like color, solubility, color changing point and chemical test. Bio-nanoparticles were prepared by modified nanoprecipitation method in different batches with variable drug/biomaterial ratio. Prepared batches were subjected for various evaluation studies like particle size, zeta potential, scanning electron microscopic studies, transmission electronmicroscopy, surface entrapment, in-vitro diffusion, differential scanning calorimetry and stability. Particle size and zeta potential result revealed that all nanoformulation were within range of 1.808 to 995.1 with slight negative in charge. Scanning electron microscopy and transmission electronmicroscopy report indicate that formulations were spherical in shape with less or no aggregation. Less surface entrapment leads to better drug entrapped inside nanomatrix. Bio-nanoformulations were capable of releasing the drug in a slow sustained manner.  From the present investigation, it may be concluded that biomaterial isolated from fruits of Carica papaya used in the preparation of bio-nanoparticle act as an efficient carriers for deliver donepezil at a controlled rate and may significantly improve the ability to cross blood-brain barrier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
international journal of nano dimension
international journal of nano dimension NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
2.80
自引率
20.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信