Maharshi Dey, Quan Tran, Jin Zhang, Godswill Ngige, Sabah Javaid, Michelle Pantoya, Surojit Gupta
{"title":"Rapid and low-temperature synthesis of MoAlB MAB phase by using stress-induced Al-particles","authors":"Maharshi Dey, Quan Tran, Jin Zhang, Godswill Ngige, Sabah Javaid, Michelle Pantoya, Surojit Gupta","doi":"10.1002/ces2.10247","DOIUrl":"https://doi.org/10.1002/ces2.10247","url":null,"abstract":"<p>Currently, MoAlB particles are produced at 1000°C and higher temperatures. In this manuscript, we report the rapid synthesis of MoAlB by altering the stress of Al particles to affect Al reactivity. The Al particles were purposefully stress-altered to reduce their threshold for reaction. The stress-altering process consisted of annealing followed by quenching of the aluminum powder. The combined process caused a reaction at a lower temperature between Mo, B, and Al to form MoAlB. The stress-altering of Al particles (i.e., Al [TT-treated]) was effective in producing >95 wt.% MoAlB after reaction at only 700°C for 10 min, a significant reduction in temperature. Based on these results, we can further project that this process can be used for manufacturing Al-based compositions at significantly lower temperatures.</p>","PeriodicalId":13948,"journal":{"name":"International Journal of Ceramic Engineering & Science","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ces2.10247","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143115415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigating lightweight foamed concrete prepared using selected brands of detergent and cement grades","authors":"Michael Asante-Amankwa, Anthony Andrews","doi":"10.1002/ces2.10253","DOIUrl":"https://doi.org/10.1002/ces2.10253","url":null,"abstract":"<p>Foamed concrete, a lightweight, cement slurry-based cellular material, presents a promising solution to economic and environmental challenges in the construction industry. Its versatility spans from structural applications to thermal insulation and soundproofing, offering benefits such as low density, energy efficiency, and affordability. The study explored the feasibility of using locally sourced materials, specifically by utilizing three different powder detergents (K, M, and S) as foaming agents. These detergents were evaluated for their composition, density, and stability and then combined with two cement grades 32.5R and 42.5R. A total of 12 sample foamed concrete groups were manufactured and checked for compressive strength, density, and water absorption. The results demonstrated that all detergents in specific formulations successfully produced foamed concrete that met or exceeded the ASTM requirements of 1.4 MPa. Samples from Detergent K achieved a dry density range of 1.32–1.539 g/cm<sup>3</sup> with 28-day compressive strength ranges of 0.64–14.25 MPa. Samples from Detergent M produced dry densities in the range of 1.255–1.559 g/cm<sup>3</sup> with a compressive strength range of 0.41–12.26 MPa and those from Detergent S produced dry density range of 1.061–1.394 g/cm<sup>3</sup> with compressive strength range of 1.03–7. 75 MPa. Notably, there were correlations between the detergent's pH, the relevant oxide quantities and the foam's density and stability which together influenced the overall performance of the foamed concrete.</p>","PeriodicalId":13948,"journal":{"name":"International Journal of Ceramic Engineering & Science","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ces2.10253","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143115416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Erdem Tevfik Özdemir, Ahmet Yavaş, Saadet Güler, Mustafa Erol
{"title":"Red mud incorporated clay roof tiles as visible light-active photocatalysts for building applications","authors":"Erdem Tevfik Özdemir, Ahmet Yavaş, Saadet Güler, Mustafa Erol","doi":"10.1002/ces2.10252","DOIUrl":"https://doi.org/10.1002/ces2.10252","url":null,"abstract":"<p>This study aims to enhance the self-cleaning properties of clay roof tiles by incorporating red mud as an industrial waste. This approach contributes to a sustainable environment by upcycling waste and developing an improved building material. Various analyses were conducted to compare the physical, structural, morphological, elemental, and optical properties of clay tiles with varying amounts of red mud. The characterization results indicated that the addition of red mud to clay roof tiles resulted in homogeneous and uniform tiles with enhanced physical properties. The red mud-mixed clay roof tiles exhibited photocatalytic activity for the oxidation of methylene blue dye. Notably, while adding more than 5% red mud improved the physical properties, the optimal photocatalytic activity was observed in clay roof tiles with a 5% red mud addition. This study underscores the dual benefits of this approach: improving the functional properties of clay roof tiles and promoting the valorization of industrial waste.</p>","PeriodicalId":13948,"journal":{"name":"International Journal of Ceramic Engineering & Science","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ces2.10252","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143110975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Crystallographic characterization of Ag-doping in nanocrystallite hydroxyapatite and evaluation of photocatalytic activity of organic pollutants","authors":"Md. Sahadat Hossain, Shifa Sarkar, Samina Ahmed","doi":"10.1002/ces2.10250","DOIUrl":"https://doi.org/10.1002/ces2.10250","url":null,"abstract":"<p>Pure and different percentages (0.25, 0.5, 1.0, and 2.5%) of silver (Ag) doped hydroxyapatites (Hap) were synthesized employing the wet chemical precipitation method. The samples were characterized with the aid of X-ray diffraction (phase analysis, crystallographic characterization, and crystal size calculation using Scherrer equation and different models), scanning electron microscopy, and optical bandgap energy. The Hap containing 0.25% Ag showed better photocatalytic activity in various dye concentrations, catalyst doses, and pH. At a very low catalyst dose (0.375 g/L) and 20 ppm pollutant concentration, reaction rate, and rate constant were evaluated for the Congo Red dye, ciprofloxacin, amoxicillin, and levofloxacin. The maximum rate constant (0.0028 min<sup>−1</sup>) and reaction rate (9.657 × 10<sup>−8</sup> mole L<sup>−1</sup>·min<sup>−1</sup>) were found for Congo Red dye and ciprofloxacin, respectively, using 0.25_Ag-Hap (0.25% Ag-doped Hap). The energies of the valance band (3.14 eV) and conduction band (−0.36 eV) were lower in the case of 0.25_Ag-Hap than the other samples. Simplified reaction mechanisms were proposed for the photocatalytic degradation of Congo Red dye, ciprofloxacin, amoxicillin, and levofloxacin.</p>","PeriodicalId":13948,"journal":{"name":"International Journal of Ceramic Engineering & Science","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ces2.10250","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143110955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Umberto C. C. S. Siciliano, Ana C. C. Trindade, Flávio de Andrade Silva
{"title":"Effect of potassium-waterglass composition on strength development and leaching behavior of geopolymers in different curing conditions","authors":"Umberto C. C. S. Siciliano, Ana C. C. Trindade, Flávio de Andrade Silva","doi":"10.1002/ces2.10251","DOIUrl":"https://doi.org/10.1002/ces2.10251","url":null,"abstract":"<p>This study delves into the impact of different potassium-waterglass (K-WG) compositions on the early reaction dynamics and strength evolution in metakaolin-based geopolymers (GP). By maintaining a constant SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> ratio of 4, the study explores the influence of varying H<sub>2</sub>O/K<sub>2</sub>O and K<sub>2</sub>O/Al<sub>2</sub>O<sub>3</sub> ratios on GP properties under both dry and saturated curing conditions. Early reaction kinetics are examined using isothermal calorimetry at room temperature (21°C), and pH measurements provide insights into alkali leaching. A strong correlation was found between total heat release and strength gain, as evidenced by ultrasonic cement analyzer (UCA) readings. The study further identifies that increased H<sub>2</sub>O/K<sub>2</sub>O ratios prolong setting times and delay the geopolymerization peaks, while a higher K<sub>2</sub>O/Al<sub>2</sub>O<sub>3</sub> ratio enhances the geopolymerization process. Vicat tests confirmed the results obtained by calorimetry and UCA: only the GP4 formulation (H<sub>2</sub>O/K<sub>2</sub>O = 8.7 and K<sub>2</sub>O/Al<sub>2</sub>O<sub>3 </sub>= 1.3) hardened in less than 7 days. Additionally, it was found that saturated curing conditions decelerate strength development, with an initial notable decline in compressive strength at 24 h compared with dry curing. However, this difference diminishes to a negligible 7.6% after 3 days. Optimal ratios of H<sub>2</sub>O/K<sub>2</sub>O = 8.7 and K<sub>2</sub>O/Al<sub>2</sub>O<sub>3 </sub>= 1.3 were determined to be critical for achieving reliable strength measurements at 1 day of curing. pH assessments indicated strong water resistance in all GP formulations, with leaching primarily governed by diffusion mechanisms. Specifically, the K-WG composition with SiO<sub>2</sub>/K<sub>2</sub>O = 1.53 and H<sub>2</sub>O/K<sub>2</sub>O = 8.69 showcased minimal leachability. These fundamental findings are crucial for the later design of GP materials that require rapid strength development, especially crucial for applications necessitating cementing under extreme conditions, such as deep-sea drilling, geothermal energy production, and high-temperature industrial processes.</p>","PeriodicalId":13948,"journal":{"name":"International Journal of Ceramic Engineering & Science","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ces2.10251","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143110940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bismuth Schiff base complex and its oxide nanoparticles as photocatalyst for the removal of dyes from water","authors":"Behrouz Shaabani, Shadi Soleimaninia","doi":"10.1002/ces2.10249","DOIUrl":"https://doi.org/10.1002/ces2.10249","url":null,"abstract":"<p>Bismuth oxide and bismuth complexes with organic ligands, particularly Schiff bases, have received much attention due to their non-toxicity, antibacterial, and photocatalytic properties in removing water and environmental contaminants by oxidative degradation. This work investigates the synthesis of bismuth complexes with the salicylidine Schiff base ligand of <b>H<sub>2</sub>L</b> through hydrothermal and solvothermal methods, the preparation of bismuth oxide nanoparticles from these complexes, and the synthesis of bismuth oxide nanoparticles from bismuth nitrate. To characterize the products, several techniques including infrared, UV–vis, X-ray diffraction (XRD), energy-dispersive X-ray analysis, and scanning electron microscopy (SEM) have been used. Hydrothermally and solvothermally produced bismuth(III) complexes with <b>H<sub>2</sub>L</b> had particle sizes of about 46 and 15 nm, respectively, while oxide nanoparticles made from them had sizes of about 42 and 52 nm, respectively.</p><p>The study also investigates the usage of complexes and oxide nanoparticles as photocatalysts under an ultraviolet (UV) lamp (30 W) irradiation to remove contaminants such as methyl orange, acid red 14, orange acid 7, and malachite green from water. The results showed that the bismuth complexes and oxide nanoparticles effectively remove these dyes from contaminated water samples.</p>","PeriodicalId":13948,"journal":{"name":"International Journal of Ceramic Engineering & Science","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ces2.10249","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143121446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extrudability of geopolymers and control of the formed networks by zeta potential and NMR spectroscopy","authors":"Wilfried Cyrille N'Cho, Ameni Gharzouni, Isabel Sobrados, Jenny Jouin, Anne Aimable, Sylvie Rossignol","doi":"10.1002/ces2.10244","DOIUrl":"https://doi.org/10.1002/ces2.10244","url":null,"abstract":"<p>In this study, the local-scale structure of geopolymers shaped by extrusion or 3D printing was investigated and correlated to the reactivity of the raw materials. The reactivity of the different metakaolin mixtures was evaluated using zeta potential measurements with different alkali silicate solutions, followed by shaping via 3D printing; additionally, the different networks formed were identified via NMR spectroscopy. The results showed that in the presence of weakly reactive basic solutions, the Al(OH)<sub>4</sub><sup>−</sup> species were released in low amounts due to an increase in the polymerized silicate species in the solution, resulting in a low zeta potential in absolute value. Conversely, for more reactive solutions, the silicate species were more depolymerized, and the siliceous and aluminous metakaolin species were more easily released in solution, resulting in increasingly low zeta potential values. Some samples were 3D printed with metakaolin mixtures using different printers and silicate solutions (K, KNa) with alkaline cation concentrations of [M] > 2.8 M in the mixtures; here, the metakaolin zeta potential values were greater than −50 mV, and the local-scale structure consisted of more than 50% geopolymer networks (Q<sup>4</sup>(3Al) + Q<sup>4</sup>(2Al)).</p>","PeriodicalId":13948,"journal":{"name":"International Journal of Ceramic Engineering & Science","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ces2.10244","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rolande Aurelie Tchouateu Kamwa, Joseph Bikoun Mousi, Sylvain Tome, Juvenal Giogetti Deutou Nemaleu, Martine Gérard, Marie-Annie Etoh, Jacques Etame
{"title":"Effect of treated palm fibers on the mechanical properties of compressed earth bricks stabilized by alkali-activated binder-based natural pozzolan","authors":"Rolande Aurelie Tchouateu Kamwa, Joseph Bikoun Mousi, Sylvain Tome, Juvenal Giogetti Deutou Nemaleu, Martine Gérard, Marie-Annie Etoh, Jacques Etame","doi":"10.1002/ces2.10246","DOIUrl":"https://doi.org/10.1002/ces2.10246","url":null,"abstract":"<p>The aim of this work is to study the influence of the palm fibers treated with soda hydroxide solution on the properties of the compressed earth bricks stabilized (CEBs) with alkali-activated binder. The improvement in their mechanical parameters is attributable with 15 wt.% of alkali-activated binder-based natural pozzolan. To achieve this objective, mortars composed of treated fibers at different levels (0.1, 0.2, 0.3, 0.4, and 0.5 wt.%) of lengths of 4 and 16 cm have been developed. These different mortars with and without fibers were subjected to mechanical (dry and wet compressive test, flexural test), physical (water absorption), mineralogical (XRD, FTIR), and microstructural (SEM/EDS) characterizations after 7 and 90 days. The results revealed that in general the incorporation of fibers improves the mechanical and physical properties of CEBs stabilized with 15 wt.% of alkali-activated binder. Furthermore, the X-ray diffraction analysis indicated that certain mineralogical phases of the raw materials dissolve during alkaline activation. The Fourier transform infrared spectra revealed the effectiveness of the fibers in sorption water molecules. Moreover, optical examination reveals that the binder utilized completely wraps the fibers. This demonstrates that the treated fibers function flawlessly as a filler in the matrix. At 90 days with the addition of 0.4 wt.% fibers, the maximum dry compressive strength and flexural strength values were 8.08<span></span><math>\u0000 <semantics>\u0000 <mo>±</mo>\u0000 <annotation>$ pm $</annotation>\u0000 </semantics></math>0.40 and 5.8<span></span><math>\u0000 <semantics>\u0000 <mo>±</mo>\u0000 <annotation>$ pm $</annotation>\u0000 </semantics></math>0.19 MPa, respectively. The stabilized earth bricks reinforced with 0.4 wt.% of palm fibers exhibited the mechanical properties values fitting the requirements of the materials candidate for the building construction applications especially as masonry bricks.</p>","PeriodicalId":13948,"journal":{"name":"International Journal of Ceramic Engineering & Science","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ces2.10246","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mathilda Derensy, Thomas Zanin, Jan-Felix Bleck, Thorsten Tonnesen, Jesus Gonzalez-Julian
{"title":"New approach of recycling vanadium-bearing slags as a binder in high-alumina refractory castables application","authors":"Mathilda Derensy, Thomas Zanin, Jan-Felix Bleck, Thorsten Tonnesen, Jesus Gonzalez-Julian","doi":"10.1002/ces2.10242","DOIUrl":"https://doi.org/10.1002/ces2.10242","url":null,"abstract":"<p>Handling the massive quantities of by-products from metallurgical processes has become a major concern in recent decades. Efforts to develop sustainable alternatives for these secondary resources are ongoing to achieve the transition to climate neutrality. This study has investigated the potential of employing vanadium-bearing slag as a new value-added binder in refractories, aiming to replace virgin raw materials. Two types of vanadium-bearing slags from BOF, each containing <2 wt.% vanadium were studied. Low-cement vanadium slag-based castables were prepared by gradually substituting 0, 2.5, and 5 wt.% of the commercial calcium aluminate cements (Secar71 and CMA72) by the slags. The flow values of the mixes containing 5 wt.% of slag decrease significantly from about 90% to 30% after 30 min, showing poor ability to flow and thus are not considered as self-flow castables. Castables containing 2.5 wt.% of slag present a cold crushing strength value, in the range of 71–116 MPa while values for castables containing 5 wt.% of slag fall into the range of 53–68 MPa due to the lower packing properties leading to higher porosity and reduce in strength. Similar observation was concluded for cold modulus of rupture. The micrographs of the samples containing both slag and cement show promising compatibility between the binder and aggregates after sintering at 1500°C. Overall, characteristics obtained with the samples containing slag show promising alternatives as a refractory lining.</p>","PeriodicalId":13948,"journal":{"name":"International Journal of Ceramic Engineering & Science","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ces2.10242","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143113039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}