{"title":"Nanostructured Thermal Barrier Coatings via Magnetron Sputtering: A Review of Enhanced Performance and Durability","authors":"Syed Faizan Altaf, Atikur Rahman, M. F. Wani","doi":"10.1002/ces2.70018","DOIUrl":null,"url":null,"abstract":"<p>The current review investigates employing magnetron sputtering techniques to create nanostructured thermal barrier coatings (TBCs) manufactured on the nickel-based superalloy, Superni 718, which is usually used to manufacture turbine parts that lay under extremely high thermal and mechanical stresses. Versus conventional coating techniques, Magnetron sputtering provides increased density and microstructure control of the coating which translates to better thermal insulation, oxidation resistance and better cyclic properties. Some of the ceramic materials employed include yttria-stabilized zirconia (YSZ) which has a low thermal conductivity (<1.71 W/m K) in addition to stability at high temperatures approximately 900°C. This is also along with the role of NiCoCrAlY bonding coats in adhesion promotion and minimizational of thermal mismatch. Major depositing parameters like working pressure, substrate temperature and sputtering mode are sharply investigated. Recent advances in high power impulse magnetron sputtering (HiPIMS) as well as the tailored bond coat design discussions are also presented in the review. Lastly, it combines material selection and deposition strategies and determines the gaps in research of in situ diagnostics and multi-parameter optimization of high-performance ceramic coating.</p>","PeriodicalId":13948,"journal":{"name":"International Journal of Ceramic Engineering & Science","volume":"7 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ces2.70018","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Ceramic Engineering & Science","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ces2.70018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The current review investigates employing magnetron sputtering techniques to create nanostructured thermal barrier coatings (TBCs) manufactured on the nickel-based superalloy, Superni 718, which is usually used to manufacture turbine parts that lay under extremely high thermal and mechanical stresses. Versus conventional coating techniques, Magnetron sputtering provides increased density and microstructure control of the coating which translates to better thermal insulation, oxidation resistance and better cyclic properties. Some of the ceramic materials employed include yttria-stabilized zirconia (YSZ) which has a low thermal conductivity (<1.71 W/m K) in addition to stability at high temperatures approximately 900°C. This is also along with the role of NiCoCrAlY bonding coats in adhesion promotion and minimizational of thermal mismatch. Major depositing parameters like working pressure, substrate temperature and sputtering mode are sharply investigated. Recent advances in high power impulse magnetron sputtering (HiPIMS) as well as the tailored bond coat design discussions are also presented in the review. Lastly, it combines material selection and deposition strategies and determines the gaps in research of in situ diagnostics and multi-parameter optimization of high-performance ceramic coating.